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Abstract

In the age where one software bug can cost millions, software correctness is
paramount. Static verifiers are used more and more in both academia and indus-
try to prevent these costly bugs. They can formally prove that an implementation
adheres to a specification. With the recent increased use of concurrency, proving
correctness of software has become more challenging. However, progress is being
made in this area: several static verifiers can now also verify languages in concur-
rent environments. Unfortunately their features are lagging behind: most checkers
do not proceed beyond the prototyping phase and do not tackle the more practi-
cal language features. To improve the situation, this work presents an approach
for implementing verification support for exceptions and inheritance as presented
in Java. We also present, in great detail, the transformation of a language with
exceptions and inheritance into a language without, and discuss the theory un-
derlying the practical support for exceptions and inheritance. Finally, we briefly
evaluate the approaches for both exceptions and inheritance, and discuss what can
be further improved in static verification.
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Chapter 1

Introduction

Java is a well-known technology in the software development industry. First re-
leased in 1996, it has since made its way to the upper half of the list of most used
programming languages. According to the TIOBE index for March 2020, it is the
most used programming language [71]. While indices like these should always be
taken with a grain of salt, there is definitely reason to believe Java has a big impact
on the lives of many software developers.

Multithreading in software has also become more and more important since
the 90’s. Multithreading combines concurrency and parallelism: it interleaves
execution of multiple threads that are executed in parallel. While it has always had
the important job of potentially improving software performance, it has become
even more important in the age where Moore’s law is not as strict as it once
was [73]. Multithreading can be effective at speeding up certain kinds of workloads.
However, it does come at a cost: increased software complexity. Where previously
Java developers only had to worry about one specific execution of the program,
multithreading exponentiates this problem. With multithreading it is possible
that these problems no longer happen consistently between executions, but only
happen in certain interleavings of certain situations. In the worst case, they might
not even be encountered during development at all, and only appear in production.

A general trend can thus be observed: as more concurrency is introduced in
an application, its complexity grows and debuggability plummets.

Taming complexity and ensuring correctness have always been goals that most
programming languages pursue. However, programming languages also need to
be practical, and hence compromises need to be made that can make these goals
difficult to achieve. To bridge this gap between practicality and correctness, static
verifiers have been developed. Static verifiers can reason about a program math-
ematically, and ensure that it adheres to a specification without running it. This
allows for programs to be debugged before they are run, and increases the chance
that bugs will be caught before software is deployed.
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One of such verifiers is VerCors. VerCors is a static verifier for concurrent
languages developed at the University of Twente [70]. It has frontends for Java,
C, OpenCL and OpenMP, and focuses on verification of data-race freedom and
functional correctness. Internally it uses separation logic to reason about multi-
threaded accesses to data.

If we have these tools that can verify if a program is free of bugs, why do we
still have bugs? In our opinion, part of the reason is that static verifiers are lacking
support for language features that are often used in the industry. Two examples
of such features, and the main focus of this work, are exceptions and inheritance.

1.1 Exceptions & inheritance
Exceptions and inheritance are two widely known features of Java. Most developers
use them daily, sometimes without even realizing it.

Exceptions are used to identify and handle failures of many kinds in Java
code. Osman et al. indicate that for four mature Java projects the proportion of
exception-related code remains around 1%, even after 6 years of ongoing devel-
opment [52]. This might not seem like a lot, but this means that for every 99
lines of code, there is 1 line of exception-related code! For code bases like Hadoop
and Tomcat, which contain millions of lines of code [32, 33], these are significant
numbers.

Exceptions allow the programmer to indicate in the program where an error
might happen, and if it does, how it should be handled. Java has some support for
checking at compile time if some exceptions are handled, but not for all of them.
Exceptions are intended to make error handling more structured and software
more robust, but they currently fail at the latter: 20% of reported bugs in 656
Java projects are related to improper exception usage [64].

Inheritance is used in Java for code reuse, and to indicate that some class spe-
cializes some other class. There are no data that indicate this feature causes bugs
directly, but inheritance is integral for idiomatic Java. Dantas and Almeida Maia
find that roughly 50% of classes in over 1000 GitHub and SourceForge projects
either extend a class or implement an interface [16].

As a practical example, code that starts multiple threads of execution must
either:

• Extend the Thread class.

• Implement the Runnable interface.

Without resorting to platform-specific APIs (which Java specifically wants to
avoid), it is otherwise impossible to start another thread without inheritance [41,
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p. 563]. Another idiomatic use of inheritance is to allow users to override some
parts of a library and keep others, thus showing a clear path when functionality
of a library needs to be extended.

It is clear that exceptions and inheritance are the cornerstones of idiomatic
Java code. Exceptions are the main tool for error handling, and if developers
want to work with threads it is impossible to get around inheritance. Therefore,
if practical Java code needs to be verified, support for exceptions and inheritance
is mandatory.

Supporting exceptions and inheritance in sequential environments is relatively
well understood. However, it is still new ground for verifiers supporting multi-
threading. This is because it is not trivial to integrate inheritance and exceptions
with verification techniques such as separation logic, which is typically used for
reasoning about concurrent programs. Therefore, among other factors, these two
features make application of static verification tools to commercial software diffi-
cult. Combined with the increased use of multithreading in the industry, it will
only become more difficult to apply static verification to existing commercial soft-
ware, unless these two major language features are soon supported by most static
verifiers.

1.2 Objectives
To change the status quo, two things must happen.

First, support for static verification of multithreaded programs must be ex-
tended. It is no longer enough to verify only the sequential subset of a language,
or a small concurrent subset. The industry needs support for a practical concurrent
subset as soon as possible.

Second, the theory for these techniques needs to be researched and documented.
The concrete implementation of the theory has to be properly documented as
well. This is not only important for academics who want to advance the theory of
verification, but also for developers who are going to use the tools.

This work aims to improve the situation for both objectives.

1.3 Research questions
This research aims to research and document support for inheritance and excep-
tions in VerCors. Therefore we decided on the following main research question:

How can VerCors support Java inheritance and
exceptions?
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We answer the main research question by dividing it up into three sub-questions:

SQ1: What are the state of the art techniques for static verification of exceptions
and inheritance?

SQ2: In which ways is the state of the art incompatible with a concurrent envi-
ronment, and what can be changed to amend this incompatibility?

SQ3: How can these techniques be implemented in VerCors, and if not, what is
preventing this?

We will now elaborate on why these sub-questions have been selected.
First, it needs to be determined how other verifiers handle verification of ex-

ceptions and inheritance. This is important to reuse results about the theoretical
foundations of exceptions and inheritance, as well as implementation guidelines.

Second, approaches to verify exceptions and inheritance must be designed for
VerCors. To achieve this, existing implementations of support for exceptions and
inheritance need to be analysed. Their trade-offs and limitations need to be com-
pared. If possible they can provide a starting point for the implementation in
VerCors.

Some implementations might be agnostic to whether or not the environment
is concurrent or not. A proof or rigorous argument that this is the case would be
desirable if the technique will be reused in VerCors

Third, it needs to be determined if the currently known approaches are com-
patible with both the verification approach of VerCors and its backend Viper.
If this is not possible, then what is preventing it and how can this be resolved?
For this sub-question, both theoretical foundations and practical limitations are
relevant. This is because the theoretical foundations provide opportunities for fu-
ture work, and the practical limitations are important to know for the end-users.
Furthermore, any changes that can be made to the approach to improve decou-
pling between VerCors and Viper will be useful as well from an architectural point
of view.

1.4 Approach
To answer the individual sub-questions, several tasks were performed.

To answer SQ1 a literature review was done. This review includes an overview
of static verifier functionality, as well as functionality regarding verification of
exceptions and inheritance. Both old and new verifiers are considered. This is im-
portant, because it ensures older sequential approaches as well as newer concurrent
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approaches for exceptions and inheritance are included. While older sequential ap-
proaches are often not directly applicable to a concurrent environment, they might
yield useful insights. These results can be found in Chapters 6 and 9.

To answer SQ2 the approaches found in the literature review were analysed for
their usefulness in concurrent environments. Sequential approaches were also taken
into account by investigating why they were not compatible with a concurrent
environment if so. These results can be found in Chapters 7 and 8.

To answer SQ3, the results of SQ2 were evaluated in the context of the VerCors
architecture. Then the approach that fits best in the VerCors architecture was
designed with the approaches from SQ2 as starting point. These results can also
be found in Chapters 7 and 8.

1.5 Contributions
This work presents the following contributions:

• An overview of older and newer tools and a discussion of their support for
concurrency and practical language features like inheritance and exceptions.

• A novel encoding of Java with exceptions into Java without exceptions com-
patible with a concurrent environment.

• A detailed practical description of support for inheritance based on the work
of [53], [36], and [54].

• A prototype implementation of the presented approach for exceptions in
VerCors.

• A manual evaluation of the presented approach for inheritance in VerCors.

1.6 Overview
Chapter 2 discusses unexpected details in the Java programming language, as well
as behavioural subtyping for inheritance in Java. Chapter 3 discusses the princi-
ples of deductive verification, and the elements used for specification of Java code.
Chapter 4 discusses knowledge needed to understand the theory and practice of
verification of concurrent programs with separation logic. Chapter 5 discusses the
tools that are the main focus of this work, showing how the tools are used in
practice and discussing concepts specific to these tools. These tools are VerCors
and Viper. Chapter 6 presents an overview of the state of the art in static verifi-
cation. Chapter 7 presents the theory and implementation of verification support
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for exceptions in Java. Chapter 8 presents the theory and a manual evaluation of
verification support for inheritance in Java. Chapter 9 compares the approaches
outlined in this work to approaches implemented in several other verifiers, such as
Verifast, Nagini, and jStar. Finally, we give our conclusion in Chapter 10.
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Chapter 2

Java

The Java programming language is ubiquitous both in industry and academia.
Therefore, in this work we assume the reader has basic familiarity with the syntax
and semantics of Java, exceptions and inheritance. However, for completeness,
a brief overview of exceptions and inheritance is given. For a more accessible
introduction to Java, we refer the reader to the free online textbook Introduction
to Programming Using Java by Eck [22].

We first discuss the notation used in this chapter and the rest of this work for
Java snippets. Then we give an overview of exceptions and discuss the technical
details. Finally, we give an overview of inheritance and discuss inheritance through
the formal definition of behavioural subtyping.

2.1 Notation
At several occasions in this work Java code snippets are presented. Some of them
are not complete Java programs. They are instead intended as chunks of a larger
hypothetical Java program. The snippets are presented this way for an economical
presentation. For example, a snippet might consist of a method definition followed
by several statements, such as in Listing 2.1. This should not be interpreted as a
faulty Java program, but a Java program that contains both the method, and the
sequence of statements somewhere in the program.

Another notation that is used is that a method implementation is replaced by
just a semicolon ;. For example, in Listing 2.1 the implementation of write has
been replaced with ;. Although this looks like an abstract method, this is not the
intention. Instead, it is intended as a concrete method for which we did not specify
an implementation because the implementation is not the focus of the example.

7



Listing 2.1: Example of an incomplete method
1 int[] get_elems() {
2 return new int[0];
3 }
4
5 void write(int[] buffer, int length);
6
7 int[] buffer = get_elems();
8 write(buffer, 10);

2.2 Exceptions
In this section, we give a brief example of general exception usage. Then we discuss
how exceptional control flow can be grouped with break and return under abrupt
termination. Finally, we discuss an edge case of finally.

2.2.1 Usage example
In Listing 2.2, data is written to a buffer. However, writing this data may fail.
This is indicated by the throws IOException attribute on the write method
of Buffer. If writing fails, the call to write on line 7 throws an instance of
IOException. This exception is caught by the catch clause on line 8. The catch
clause logs an error that writing failed. In either case, whether the call to write
throws or not, the buffer is closed by calling the close method. This is enforced
by the finally clause, which is always executed, even if an exception is thrown
or the method returns.

Listing 2.2: Example usage of try-catch-finally
1 class Buffer {
2 void write(int[] data) throws IOException;
3 void close();
4 }
5
6 try {
7 buffer.write(data);
8 } catch (IOException e) {
9 Logger.logError("Could not write data to buffer");

10 } finally {
11 buffer.close();
12 }
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2.2.2 Abrupt termination
Abrupt termination [47, p. 14] is a grouping term for control flow that does not go
from one statement to the next, like regular control flow. Instead, abrupt termina-
tion is when a statement terminates not because it is completed, but because it is
terminated sooner than normal and control flow is redirected to another program
point. Abrupt termination is sometimes also referred to as non-local or non-linear
control flow.

One example of abrupt termination is the throw statement, as it aborts exe-
cution of the current block and redirects control flow to the nearest catch block.
However, break, continue and return are examples of abrupt termination as
well: they all terminate the current block earlier than normal, and redirect control
flow to another program point.

We also want to mention labeled break and continue, as they are a source of
complexity for this work. Labelled break and continue allow the user to specify
which loop to break from or continue to. These constructs can be useful when
nested loops are used. By allowing use of labels these features become similar
to goto. Furthermore, labeled break can also be used to break from compound
statements, such as if, switch or blocks.

2.2.3 Abrupt termination hiding
In Java, the finally clause is executed when control flow leaves the try block.
However, since finally can contain arbitrary statements, it can overwrite reason
the try block was terminating (for example, an exception, or return statement),
thus hiding information.

Listing 2.3: Example usage abrupt termination hiding
1 int write() throws IOException {
2 try {
3 throw new IOException();
4 } finally {
5 return 3;
6 }
7 }

The example in Listing 2.3 illustrates this problem. The exception thrown
on line 3 would normally propagate to the caller. However, because the return
statement on line 5 is executed after the throw, it overwrites that an exception
is being thrown, thus hiding the exception. While it is easy to avoid putting a
return statement in a finally clause, this behaviour becomes problematic once
methods are being called in finally that can also throw. In the worst case,
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an OutOfMemoryError might be unintentionally hidden, allowing the program to
continue in a broken state.

This problem is partially resolved by the try-with-resources construct. This
statement saves any exceptions that occur while closing the resource in a list
contained in the original exception.

2.3 Inheritance
We now give a brief example usage of inheritance, and then show how inheritance
can be formalised through behavioural subtyping.

2.3.1 Usage example
In Listing 2.4 the class Cell allows setting and getting the field value. A developer
wants to extend the behaviour of Cell by keeping track of the previous value.
This can be achieved by creating a new class, ReCell, that extends the Cell class
using extends. In this specific case, ReCell specializes the behaviour by keeping
track of the previous value in a separate field bak. In set, it still uses the set
implementation of Cell. ReCell also does not override get as the implementation
can be reused. By doing this, ReCell respects the behaviour of the superclass
Cell: set still sets, and get still gets.

Listing 2.4: ReCell extends Cell through inheritance. This example was originally
described by Parkinson in Local reasoning for Java [54]

1 class Cell {
2 int value;
3
4 void set(int x) {
5 value = x;
6 }
7
8 void get() {
9 return value;

10 }
11 }
12
13 class ReCell extends Cell {
14 int bak;
15
16 void set(int x) {
17 bak = value;
18 super.set(x);
19 }
20 }
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2.3.2 Behavioural subtyping
Java sets no limitations on how inheritance is applied in practice. Therefore, it
can be used for both code reuse and specialization. Use of inheritance falls in the
category of code reuse if it is used to, for example, inherit the implementation of
a method of another class. However, if the only goal is reuse, it is often not the
case that the subclass respects the behaviour of the superclass. Inheritance falls
in the category of specialisation if the subclass still respects the behaviour of the
subclass.

This notion of “respecting the behaviour of the subclass” is formalized through
behavioural subtyping. It is defined by the Liskov substitution principle [46], also
referred to as the Subtype Requirement:

Let ϕ(x) be a property provable about objects x of type T . Then ϕ(y)
should be true for objects y of type S where S is a subtype of T .

Informally, this can be interpreted as stating that given x is type T , y is type S,
and S is a subtype of T , then every x can also be replaced by y.

In this work, whenever it is stated that some type C is a behavioural subtype
of D, it is implied that the Liskov substitution principle would hold for types C
and D. For example, in Listing 2.4, it is the case that ReCell is a behavioural
subtype of Cell because any place where Cell can be used, ReCell would also
work.
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Chapter 3

Deductive Verification

This chapter discusses deductive verification. We start by discussing the theory
of deductive verification in logic, as well as Hoare triples. Then we apply this
knowledge to verification of Java programs, and discuss the specification elements
needed for verification of Java programs as well as the semantics of these specifi-
cation elements.

3.1 Deductive verification
Deductive verification is the approach of using deductive logic for verification of
programs. Therefore, the term deductive verification raises two questions: what is
deductive logic, and how is it used for program verification. These questions will
be discussed in sequence. For a more thorough discussion of these topics we refer
the reader to Mathematical logic for computer science by Ben-Ari [6].

3.1.1 Deductive logic
Deductive logic is the process of reasoning from several facts towards a conclusion,
using axioms and rules. The sequence of applied rules and axioms used can be
seen as a proof for the conclusion.

We will now discuss an example of such a proof. We begin with the logical
statement:

the sun shines ∧ sky is blue

Intuitively, to prove this we need to prove that both the sun shines and that
the sky is blue. Formally, we can use the rule ∧-split:

12



P Q
∧-split

P ∧Q

This rule states that to prove P ∧ Q, it suffices to prove both P and Q indi-
vidually. The elements above the line are called premises, and the elements below
the line the conclusion. A rule with no elements above the line can be applied
anytime: it is an axiom. Applying the rule to the logical statement by replacing
P and Q with the elements from the logical statement yields the following:

the sun shines the sky is blue
∧-split

the sun shines ∧ sky is blue

Proving that the sun shines might involve complex logic, requiring a separate
proof on its own. This is indicated by four vertical dots. However, the sky being
blue is because of Rayleigh scattering, and therefore an axiom in the logical system.
Applying this notation results in the following finished proof:

····
the sun shines

Rayleigh scattering
the sky is blue

∧-split
the sun shines ∧ sky is blue

The deductive logic described in the example is limited to plain logic. Deductive
logic can be extended to allow reasoning about programs with Hoare logic, as dis-
cussed in the next section.

3.1.2 Hoare logic
To extend deductive logic to allow reasoning about programs, deductive logic is
extended with Hoare triples. This is also called a Hoare logic, and was first intro-
duced by Tony Hoare in ‘An Axiomatic Basis for Computer Programming’ [30].
A Hoare triple has the following form:

{ P } c { Q }

The Hoare triple states that if P holds, and c is executed, Q will hold. Conversely,
if P does not hold and c is executed, anything can happen. P and Q are referred
to as the pre-state and post-state respectively. c can be an atomic statement, or a
compound statement consisting of other statements. Deductive rules can now be
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defined that prove or decompose Hoare triples, allowing to prove some programs
correct. An example of a rule that decomposes a Hoare triple is the Sequence rule:

{ P } c { R } { R } d { Q }
Sequence

{ P } c; d { Q }

This rule states that to prove that Q holds after c and d are executed in sequence,
c and d need to be proven to hold individually. R is the expression that must hold
in-between c and d, and can be chosen appropriately.

An example of an axiomatic rule is the rule for assignment:

Assign
{ Q[E/x] } x := E { Q }

The notation Q[E/x] means “Q where every occurrence of x is replaced by E”.
Thus, this rule states that if Q with every occurrence of x replaced by E holds,
then Q holds after the assignment of E to x. For example, we can apply this rule
to the statement x := 4 to get the following proof:

Assign
{ (x = 4)[4/x] } x := 4 { x = 4 }

Since (x = 4)[4/x] = (4 = 4) = true, the pre-state is always true. Hence, this
assignment can always be proven correct, with respect to the pre- and post-state.

3.2 Java program verification
Java verification is often done in a notation introduced by JML. VerCors follows
this notation, and also uses several specification elements introduced by JML. The
notation requires that any specification statements are put directly in program
code. However, directives are either preceded by //@, or surrounded by /*@ ...
@*/. This effectively puts all verification directives in comments, ensuring the
verification code has no runtime cost. Semantically, verification directives can
only inspect the program state, but not change it.

Verification of Java programs is mostly done through the following specification
elements: assert, requires, ensures and loop_invariant. VerCors allows use
of other specification elements that do not exist in JML, such as context and ghost
parameters. However, this work does not use them. We refer the reader to the
VerCors documentation [72] for more info about these specification elements. In
this section we discuss each of these verification elements, using the example shown
in Listing 3.1. We also give an informal and incomplete description of what Hoare
logic rules and triples would look like for these verification elements. The rules are
incomplete in the sense that certain aspects of programming language semantics
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Listing 3.1: Example usage of assert, requires, ensures, and loop_invariant.
1 void test() {
2 int input_v = 20;
3 //@ assert input_v > 0;
4 int output_v = incrementBy10(input_v);
5 //@ assert output_v == 30;
6 }
7
8 //@ requires v > 10;
9 //@ ensures \result == v + 10;

10 int incrementBy10_2(int v) {
11 int total_v = v;
12 int i = 0;
13 //@ loop_invariant total_v == v + i;
14 //@ loop_invariant 0 <= i && i <= 10;
15 while (i < 10) {
16 total_v = total_v + 1;
17 i = i + 1;
18 }
19 //@ assert !(i < 10);
20 return total_v;
21 }

are missing. For example, modelling of local and global state, expressions with
side-effects and proper modelling of return values are missing. However, because
they are incomplete does not mean they are not useful, as the examples give an
intuition of what is verified. For a formal discussion of Hoare logic rules and triples
for Java, we refer the reader to ‘Java Program Verification via a Hoare Logic with
Abrupt Termination’ by Huisman and Jacobs [35].

3.2.1 Assert
The assert specification statement in VerCors is similar to the assert statement
in Java, in the sense that they both fail if the condition is not true. However,
the specification assert cannot have side-effects. For example, an assert that
uses the increment operator (e.g. i++) is not allowed. Furthermore, it is statically
checked by VerCors, and does not throw an exception at runtime. In this work,
if the assert statement is mentioned without any qualification, the specification
statement is intended, and not the Java statement. In Listing 3.1 assert is used
on line 3 to check that the value of input_v is positive.

The Hoare rule for assert is as follows:
Assert

{ P } assert P ; { P }
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Informally, it requires the condition P to hold before the assert, and allows P to
be assumed afterwards.

3.2.2 Requires and ensures
requires and ensures denote pre- and post-conditions of a method. The requires
and ensures elements are sometimes also referred to as the contract in general.
requires clauses specify what needs to hold before the method can be called.
Since they hold when the method is called, requires clauses can therefore be
assumed at the start of the method.

Conversely, ensures specifies what needs to hold when the method finishes,
either via return or throw, or by simply executing the last statement. Similarly,
since ensures clauses hold at the end of a method, the ensures clause can also
be assumed after a method call returns.

requires and ensures mirror the structure of a Hoare triple: they state what
is required to hold before the method, and what is ensured to hold after the method
is executed. The method implementation mirrors the proof of how post-condition
follows from the pre-condition. This makes reasoning about methods & method
calls similar to reasoning about Hoare triples.

The contract can also be seen as an interface: it abstracts away from the
implementation. Even though an implementation might use a complex algorithm
or GPU resources to compute the result, the contract ensures that clients can only
depend on abstract properties of the result.

In Listing 3.1, the contract of incrementBy10 is specified on line 8. The method
requires that the argument v is bigger than 10, and in return it will ensure that
the return value is the sum of the argument and 10. Note that the return value is
referred to through the \result keyword. The postcondition of incrementBy10
allows the assertion on line 5 to verify. This is because input_v equals 20, and
the postcondition states the result is v incremented by 10. Therefore, output_v
must equal 30.

The requires and ensures clauses appear in two Hoare rules: the Call rule
and the MethodDefinition rule. They are defined as follows:

Call
{ f.requires } x.f(ē) { f.ensures }

{ P } c { Q }
MethodDefinition

U f(T x) requires P ; ensures Q; { c }
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Call inserts the pre- and post-conditions into the proof to be proven and as-
sumed respectively. MethodDefinition requires a proof that given P , after c is
executed, Q holds. Here U is the return type of the method, and T x represents a
series of arguments.

Modular verification

The way requires and ensures are defined allows modular verification, which is
an important property of static verifiers. Modular verification means that methods
can be verified independently of the correctness of other methods [3]. During
verification of a method, the contracts of other methods are assumed to be correct.
The correctness of a method can then be verified. Whether or not those called
methods actually adhere to their contracts can be verified independently at a later
time.

Modular verification has three beneficial properties. First, method implemen-
tations cannot break other methods. If a method changes its implementation, other
methods remain correct, as long as the contract remains unchanged. Second, verifi-
cation of many methods can easily be parallelized, or earlier results cached. Third,
an implementation of a called method can be omitted, since only the contract is
needed for verification of other methods. This is useful in situations where there
are multiple parties working on one piece of software, or if parts of the software
are not implemented yet.

3.2.3 Loop invariants
A loop_invariant is used for the verification of loops. Loops can be verified in
two ways. One way is to unroll the loop as many times as needed for the method
to verify. This is a simple and effective method. The drawback is that it is often
impossible to know beforehand how many times the loop needs to be unrolled.
Therefore, unrolling the loop is an incomplete method for verification.

A different way is to use a loop invariant. The loop invariant is specified by
the user, and is supposed to hold upon entry of the loop. The loop invariant also
needs to hold after every iteration of the loop. After the loop terminates, the
loop invariant can be assumed, together with the negation of the loop condition.
By simplifying verification of the loop into checking if a loop invariant holds,
verification becomes complete again: given a loop invariant, VerCors can check
whether it holds upon entry and after an iteration. Conversely, loop unrolling is
not complete, as it is not possible to tell if unrolling a loop one more time will
allow the program to verify. However, the loop invariant has a cost: they can
require some original insight from the user, making the verification process less
automated.
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Listing 3.2: General form of a signals clause.
1 class E extends Exception {
2 public int x;
3 }
4
5 //@ signals (E e) e.x > 0;
6 public int m() throws E { ... }

In Listing 3.1, the loop invariant on line 13 facilitates proving that total_v
is indeed incremented by 10. The loop invariant is combined from 2 smaller loop
invariants, which state that 1) total_v is always equal to the sum of v and i, and
2) that i stays between 0 and 10 inclusive. 1) holds after every loop iteration, as
both total_v and i are incremented. 2) holds as well, since as soon as i becomes
10, we exit the loop. After the loop, the negation of the loop condition holds,
as shown by the assert on line 19. This negation, combined with 2), implies
that i must be 10. This fact, combined with 1), allows VerCors to prove the
postcondition.

This is the Hoare rule for While:

{ C ∧ I } c { I }
While

{ I } while (C) loop_invariant I; { c } { ¬C ∧ I }

Note that c is verified in isolation: it cannot depend on state from before the loop.
If information from the pre-state of the loop is required, it must be put in the loop
invariant.

3.3 Exception specification
The JML signals clause is used in VerCors for the specification of exceptions. It
indicates a postcondition that must hold when an exception of a specific type is
thrown. It is also referred to as an “exceptional postcondition”.

The specific syntax for this clause is shown in Listing 3.2. The type E has to be
a subclass of Throwable, as is the case in Listing 3.2. e.x > 0 is the postcondition
that must hold when the exception is thrown, and can state properties about the
thrown object e.

For any type that a method throws, the method must have a throws attribute
or a signals clause. Therefore, the set of types a method can throw is the union
of types in its signals clauses and its throws attribute. This is a good property
for verification as it is now possible to exactly know which types can be thrown at
some point in the program.
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However, this does not accurately model Java exception semantics, because
unchecked exceptions can always be thrown. This uncertainty can be opted into
by adding a signals clause with the true post-condition. For example, adding
signals (RuntimeException e) true; ensures that any calling code must as-
sume that any RuntimeException can be thrown. Therefore, any calling code
that is verified must wrap this method call in a try-catch statement to ensure it
does not escape, or indicate it throws a RuntimeException as well.

The Hoare rules for exception specifications modify the rules for Call and
MethodDefinition. They introduce an additional variable exc, which is null when
no exception is thrown, and non-null when an exception is thrown. The rules are:

CallExc
{ f.requires } x.f(ē) { excQ }

{ P } c { exc = null =⇒ Q ∧ exc 6= null =⇒ R }
MethodDefinitionExc

U f(T x) requires P ; ensures Q; signals R; { c }

Where

excQ ≡ (exc = null =⇒ f.ensures) ∧ (exc 6= null =⇒ f.signals)

3.4 Inheritance specification
For verification of inheritance no special syntax is needed. However, it still needs
to be verified that the Liskov substitution principle, as discussed in Section 2.3.2,
is adhered to. There are two options, each interpreting the substitution principle
slightly differently and involving a different trade-off.

The first way is to verify that a method implementation obeys not just its own
contract, but also each of its parent contracts individually. The advantage of this
approach is that it is flexible, as it allows for code to be reused in multiple contexts.
Consider Listing 3.3. The implementation of EvenCounter ensures x is even and
remains so. The implementation can be reused for OddCounter, as long as x is
initialized to an odd number. The drawback is that this approach is not modular:
every subclass has to be verified in the context of every superclass, resulting in
quadratic growth of proof obligations.
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Listing 3.3: Example of a case of inheritance where flexible semantics are needed.
1 class EvenCounter {
2 int x;
3
4 //@ requires x % 2 == 0
5 //@ ensures x == \old(x) + 2
6 void count() {
7 x = x + 2;
8 }
9 }

10
11 class OddCounter extends EvenCounter {
12 // New contract , same implementation:
13 //@ requires x % 2 == 1
14 //@ ensures x == \old(x) + 2
15 void count();
16 }

The second way, often referred to as “specification inheritance”, requires every
method to adhere to the specification of the overridden method. This approach
restores modularity, as for every subclass it only needs to be proven if it adheres
to the contract of its superclass, resulting in a linear growth of proof obligations.
It also transitively preserves the Liskov substitution principle in the inheritance
hierarchy. The drawback of this approach is that it is less flexible: patterns such
as Listing 3.3 are not expressible in this approach. However, because modularity
is a valuable property for timely verification, specification inheritance is preferred
over the non-modular approach. The verifiers OpenJML [14] and KeY [1] also use
specification inheritance.

This is the proof rule for inheritance:

···· MethodDefinition

V D.f(T x) requires R; ensures S;

C extends D U extends V

{ P } c { Q }
R =⇒ P ∧Q =⇒ S

MethodOverride
U C.f(T x) requires P ; ensures Q; { c }

It introduces several requirements when overriding a method. When overriding
a method, the overridden method must exist. The method f in class D is indicated
by the premise D.f . If C.f is overriding D.f , it must also be the case that C is a
subclass of D. The return type of the overriding method must be a subclass of the
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return type of the overridden method. The implementation of C.f must adhere to
the contract of C.f . And finally, the contract of C.f and D.f must be compatible:
R must imply P , and Q must imply S. This allows C.f to be used wherever D.f
is used, hence enforcing the Liskov Substitution Principle.
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Chapter 4

Separation Logic

Separation logic is an extension of Hoare logic (discussed in Section 3.1.2). Its main
purpose was to reason about sequential programs using pointers [50]. However, it
was later determined that it could also be useful for concurrent programs, and was
extended to concurrent separation logic by O’Hearn [51]. This chapter gives an
informal introduction. For a more in-depth discussion of separation logic, we refer
the reader to ‘Separation logic’ by O’Hearn [49], or the original papers referenced
earlier.

Separation logic (SL) is discussed as it is the feature that allows verification
of concurrent programs. Furthermore, it is particularly relevant for the verifica-
tion of inheritance, as it prevents use of specification inheritance (as presented in
Section 3.4). This problem is discussed in Section 4.2.4.

In this section, first the theory of SL is discussed: resources, permissions, the
separating conjunction, and magic wands. Abstract predicates (APs) and abstract
predicate families (APFs) are also discussed. Specific concurrency primitives from
concurrent separation logic such as resource invariants and parallel composition
are not discussed, as they are not relevant for this work. Then we discuss how
these concepts can be used for the verification of Java, and what kinds of problems
SL, APs and APFs solve.

4.1 Theory of separation logic
In this section we present a theoretical basis of SL. First, the basic elements of SL
are discussed. These are the heap, which models which locations are accessible,
and resource assertions, which make assertions about these locations. Then we
move on to more advanced concepts: abstract predicates and abstract predicate
families.

22



4.1.1 The heap
The heap is the context of a separation logic expression. In pure separation logic
it is a partial mapping from addresses to values. This can be compared to an
integer memory with linear address space. However, in the context of Java, the
heap is usually considered as a collection of object fields with corresponding values,
such as integers or references. This is also the view taken in this work. Besides a
location and a value, an entry in the heap also contains a fraction between 0 and
1. If this fraction is 1 then the value can be written to. If the value is more than
0 and less than 1, it can only be read from.

Heaps can be split and merged. When split into two, fractions of entries must
be properly divided between the two parts. When merged, the fractions of entries
in both parts must be added together.

Formally, a heap is a partial function from locations to tuples of fractions and
values:

h : loc ⇀ (frac, val)
Concrete heaps can be expressed with the following notation. For a concrete

heap h:

h ≡ { l
1
27−→ v, · · · }

Here l represents a location or address, and v the value at that location. In
this specific case, there is only read permission, as the permission is 1

2
. v can be

replaced with an underscore (_) if the value is irrelevant.

4.1.2 Resource assertions
Resource assertions are expressions that make assertions about heaps. It can be
checked if a resource assertion a holds for a specific heap h by evaluating the
separation logic judgement: h |= a. If true, a holds for h. Resource assertions can
also abbreviated to resources. We will now discuss what kind of resource assertions
can be made about heaps.

Permission

Permissions Perm(location, fraction) assert that an amount of permission is present
in the heap for a specific location. h |= Perm(l, f) is true if location l is in h with
a fraction of at least f . Similar to fractions in the heap, Perm can be split in two
or merged. Some examples of permissions:

• Perm(this.x, 1
2
)
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• Perm(obj.y, 1
1
)

• Perm(z, 2
3
)

• Perm(x.y.z, 0
1
)

Separating conjunction

The separating conjunction P ∗Q composes resource assertions. h |= P ∗Q holds if
the heap can be split in two disjoint parts h′ and h′′ such that h′ |= P and h′′ |= Q.
Intuitively, this means that the permissions present in P and Q must not add up
to more than 1: their “footprints” must not overlap . For example, the following
judgement holds, as 1

2
can be split into two quarters:

{ x
1
27−→ _ } |= Perm(x, 1

4
) ∗ Perm(x, 1

4
)

However, the following does not, because not enough permission is present in
the heap:

{ x
1
27−→ _ } |= Perm(x, 1

2
) ∗ Perm(x, 1

2
)

Besides resource assertions, the separating conjunction also allows combining
resource assertions and boolean expressions. For example, the following resource
assertion states that the location x must have a value bigger than or equal to 0:

{ x
1
27−→ 5 } |= Perm(x, 1

2
) ∗ x > 0

Since the heap contains the value 5 at location x, this judgement is true. The
previous example exposes another important property of resource assertions: they
must be self-framing. Self-framing implies that if a heap location is used in a
boolean expression, the heap must at least have read permission for that location.
This can be guaranteed by including a Perm in the resource assertion. The pre-
vious judgement is self-framing, but the next one is not, as y is not present in the
heap at all:

{ x
1
27−→ 5 } 6|= y > 0

Furthermore, even if a resource assertion is properly self-framed, the judgement
is still false if the heap does not contain the permission:

{ x
1
27−→ 5 } 6|= Perm(y, 1

2
) ∗ y > 0
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Separating implication

The separating implication, sometimes called magic wand, P −∗ Q indicates that
a certain assertion can be gained by giving up another resource. This mutates
the heap, as permissions are taken away and granted. Therefore, the separating
implication is inherently imperative. We can express this exchange of resources in
a Hoare rule for the apply statement:

Apply
{ P ∗ P −∗ Q } apply P −∗ Q { Q }

Doing this exchange of resources is often referred to as applying the magic
wand. Note that after applying the wand, the magic wand itself is not in the
post-state: applying the wand consumes it.

4.1.3 Abstract predicates
Abstract predicates (APs) were first introduced by Parkinson in Local reasoning
for Java [54]. Their intended use is to enable encapsulation in separation logic.
An abstract predicate definition consists of a name, zero or more parameters with
types, and a body: pred(T x) = body. An AP can be used in resource assertions,
but is treated as an opaque resource. This means the resources contained in the
predicate can only be used by explicitly exchanging the AP for the AP body. This
is called “unfolding” the AP. After this exchange, the AP body is available, but
the AP is not. In this sense APs are similar to magic wands, as they mutate the
heap and hence are inherently imperative. This unfolding can be expressed in a
Hoare rule for the unfold statement:

pred(x̄) = body
Unfold

{ pred(ē) } unfold pred(ē) { body[ē/x̄] }

Conversely, abstract predicate bodies can also be wrapped back into a predicate
by folding. This is expressed in a Hoare rule for the fold statement:

pred(x̄) = body
Fold

{ body[ē/x̄] } fold pred(ē) { pred(ē) }

Like permissions, predicates can also be split and merged. The notation for
this is to prefix an AP with a fraction in brackets:

pred(ē) ≡ [1
4
]pred(ē) ∗ [3

4
]pred(ē)
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When a split predicate is unfolded, all permissions and predicates in the body
are multiplied by the fraction of the predicate. Similarly, to fold a split predicate,
only a fraction of the body is needed.

4.1.4 Abstract predicate families
Abstract predicate families (APFs) extend APs. Where abstract predicates are
needed to allow encapsulation, abstract predicate families allow subtyping in sep-
aration logic.

Their notation is almost identical: definitions of APFs also consist of a name,
argument and body. However, one change is that APFs are defined for one or
more types. These types can be receivers of the APF. For example, if a type X
has a predicate pred, it could be used in a resource assertion as follows, where x
has type X:

Defined for X: pred(int a, int b) = body

h |= Perm(x, 1
2
) ∗ x.pred(2, 3)

Defining an APF named pred for a type T introduces the following two elements
for use in resource assertions. First, it allows the use of predicate family instances
such as t.pred(). Second, it allows the use of the predicate family instance qualified
with the concrete type T . Such qualified predicate family instances are called
predicate entries, and their notation is: t.pred@T ().

APFs allow three interesting operations.
First, if the type of t is known, a predicate family instance may be exchanged

with a predicate family entry of that type. Conversely, if a predicate entry is
qualified by a type T and the receiver also has type T , it may be exchanged for
a predicate family instance. Second, predicate entries can be unfolded and folded
like regular predicates. Note that for folding and unfolding predicate entries, the
type does not have to match explicitly. Third, the arities of predicate family
instances can be adjusted as needed. If the last argument is not needed, it can be
discarded. If an argument is missing at the end it can be existentially quantified
and appended.

If multiple types define an APF with the same name, and the types are sub-
types, the predicate family instances are shared. However, the predicate entries
are still separate. For example, given objects t and u with types T and U re-
spectively and T being a subtype of U , if they each define an APF pred(), then
t.pred() and u.pred() can both be used. However, t.pred() can only be exchanged
for t.pred@T (), and not for t.pred@U().
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4.2 Usage in Java verification
Most of separation logic elements that are discussed in this chapter are already
supported in VerCors. Therefore we discuss how separation logic is practically
used up to and including APs. APFs are not yet supported in VerCors, but we
discuss how they allow verification of inheritance. We also present a hypothetical
usage example of APFs.

4.2.1 Syntax
The syntax for separation logic in Java is similar to the syntax used in the the-
ory section. This is also the syntax used by VerCors. However, there are a few
differences.

To make the distinction between SL in Java and pure SL clear, all Java SL
elements are written in monospace font instead of italic font for pure SL.

Fractions for Perms are written using a backslash, instead of a horizontal divider
or the more conventional forward slash. For example, Perm(this.x, 1\2) and
Perm(y, 2\3) are valid permissions, as they both use a fraction written with a
backslash. Perm(this.x, 0.5) and Perm(y, 4/5) are not valid permissions, as
decimal numbers and plain divisions are not fractions. The write permission of
1\1 can be abbreviated with write.

For locations, if merely a variable x is used, it is interpreted as if this.x
was typed. This is similar to how general Java scoping works. For example, if
the current class has a field x, Perm(x, 1\2) is identical to Perm(this.x, 1\2).
This also extends to abstract predicates: if a predicate pred() is used in a resource
assertion, it is interpreted as this.pred().

The separating conjunction is written with a double star, e.g. P ** Q, to avoid
confusion with multiplication, *. The magic wand uses a dash and a star: P -*
Q.

4.2.2 Permission usage in programs
In Java programs verified with SL, the heap is not explicit like the judgements
from Section 4.1. Instead, the heap is implicit in the state of the program. This
state is mutated when variable assignments are executed, objects are allocated
through new, predicates are unfolded and magic wands are applied. Particularly,
Perms for locations can be acquired in the following ways:

• If available in the pre-condition, resources will be available at the start of
the function.

• When objects are allocated, permissions for all the fields are created.
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• By unfolding predicates and applying magic wands.

Permissions can also be leaked. For example, if a method does not put per-
missions in the post-condition, the permissions are thrown away at the end of the
method and not returned to the caller.

Listing 4.1 contains some example usages of permissions in contracts and
asserts.

Listing 4.1: Example usage of permissions.
1 //@ requires Perm(obj.x, 1\2);
2 //@ ensures Perm(obj.x, 1\2);
3 void returnsPermission(MyClass obj) {
4 print(obj.x) // Read the value by printing it
5 }
6
7 //@ requires Perm(obj.x, write)
8 void leaksPermission(MyClass obj) {
9 obj.x = 5; // Change the value

10 }
11
12 void setTwice() {
13 MyClass object = new MyClass();
14 //@ assert Perm(object.x, write);
15 returnsPermission(object);
16 //@ assert Perm(object.x, write); // Permission is still available
17 leaksPermission(object);
18 //@ assert Perm(object.x, write); // Permission was leaked: fails!
19 }

4.2.3 Java & abstract predicates
In Java, and software engineering in general, private fields of a class are not part
of the interface. Therefore, clients of a class should not have to deal with private
fields. However, in separation logic, clients do have to deal with the existence
of private fields because the permissions to those fields have to be managed. An
example of this is shown in Listing 4.2. Even though value is a private field, the
permission to it still has to be managed by the client. Worse, if the implementation
or permissions of Cell change, verification of the client might also break. Abstract
predicates solve this by allowing permissions to be abstracted behind an opaque
name.
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Listing 4.2: Example of encapsulation being violated
1 class Cell {
2 private int value;
3 //@ requires Perm(value, write);
4 //@ ensures Perm(value, write);
5 void set(int x) {
6 value = x;
7 }
8 }
9

10 //@ requires Perm(c.value, write);
11 //@ ensures Perm(c.value, write) ** c.value == 5;
12 void setTo5(Cell c) {
13 c.set(5);
14 }

In VerCors, abstract predicates are defined by specifying a ghost function with
return type resource. In example Listing 4.3, this is done on Line 4. The final
keyword is needed to indicate it is not an abstract predicate family, as discussed
in Section 4.2.4.

Listing 4.3: Example of encapsulation in using abstract predicates
1 class Cell {
2 private int value;
3
4 /*@ final resource state(int p) = Perm(value, write)
5 ** value == p; @*/
6
7 //@ requires state(oldValue);
8 //@ ensures state(x);
9 void set(int x) {

10 //@ unfold state(oldValue);
11 //@ assert Perm(value, write);
12 value = x;
13 //@ fold state(x);
14 }
15 }
16
17 //@ requires c.state(oldValue);
18 //@ ensures c.state(5);
19 void setTo5(Cell c) {
20 c.set(5);
21 //@ assert [1\2]c.state(5) ** [1\2]c.state(5);
22 }

When only the name of the abstract predicate is used, as done on line 7 of the
example, it is referred to as an abstract predicate instance. The right hand side of
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the definition is called the abstract predicate body, which is parametrised by the
abstract predicate parameters.

Abstract predicates can be manipulated by the fold and unfold statements.

4.2.4 Java & abstract predicate families
Separation logic with abstract predicates allows encapsulation, but not subtyping.
In Listing 4.4 ReCell is intuitively a subtype of Cell. However, their contracts
are not subtypes, as a heap with one permission can never be the same size as a
heap of two permissions. Abstract predicates would not resolve this problem: then
there would be two incompatible abstract predicates instead of two differently-sized
heaps. Therefore, in pure separation logic it is not possible to express subtyping.

Listing 4.4: Intuitively ReCell is a subtype of Cell, but the contract of ReCell is
not compatible with the contract of Cell.

1 class Cell {
2 int value;
3
4 //@ requires Perm(value, write);
5 //@ ensures Perm(value, write);
6 void set(int x) {
7 value = x;
8 }
9 }

10
11 class ReCell extends Cell {
12 int bak;
13
14 //@ requires Perm(value, write) ** Perm(bak, write);
15 //@ ensures Perm(value, write) ** Perm(bak, write);
16 void set(int x) {
17 bak = value;
18 value = x;
19 }
20 }

APFs enable verification of behavioural subtyping. In Listing 4.5, APFs have
been used to model the common state between Cell and ReCell. In this example,
if we check the contracts of set for both Cell and ReCell for subtyping, it is clear
that they are subtypes. They both require the APF state and ensure the APF
state. Hence, ReCell is a subtype of Cell. The management of predicate arities
is done implicitly in this case. However, in a concrete implementation, it is likely
these arities have to be managed manually, as APFs are currently not supported
natively but are encoded into APs.

30



Listing 4.5: With abstract predicate families, it can be verified that ReCell is a
subtype of Cell.

1 class Cell {
2 int value;
3
4 //@ resource state(int p) = Perm(value, write) ** value == p;
5
6 //@ requires state(oldVal);
7 //@ ensures state(x);
8 void set(int x) {
9 //@ assert this instanceof Cell

10 //@ unfold state@Cell(oldVal);
11 value = x;
12 //@ fold state@Cell(x);
13 }
14 }
15
16 class ReCell extends Cell {
17 int bak;
18
19 /*@ resource state(int p, int q) =
20 Perm(value, write) ** value == p
21 ** Perm(bak, write) ** bak == q;
22 @*/
23
24 //@ requires state(oldVal, oldBak);
25 //@ ensures state(x, oldVal);
26 void set(int x) {
27 //@ assert this instanceof ReCell
28 //@ unfold state@ReCell(oldVal, oldbak);
29 bak = value;
30 value = x;
31 //@ fold state@Cell(x, oldVal);
32 }
33 }

Note that APFs as described in this chapter are not enough to support in-
heritance. In this description there is an implicit assumption that methods are
only called if the dynamic type is the same as the class the method is defined
in. However, this does not hold in the case of super calls and constructors.
Approaches to deal with this are discussed in Chapter 8, as each approach in-
volves different trade-offs.
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Chapter 5

VerCors & Viper

The first section of this chapter discusses the interface VerCors offers for veri-
fication, its internals, and what an average session of VerCors usage looks like.
The second section discusses the main backend of VerCors, Viper, and its input
verification language, Silver.

5.1 VerCors
VerCors is a static verifier developed by the FMT group at the University of
Twente, and the main focus of this work. It can verify programs written in Java,
OpenCL, C, and PVL.

Most of these languages are well-known, except for PVL, which is the custom
verification language for VerCors. It can be used to model concurrent programs
in languages that do not have a frontend yet. As it is also intended as a direct
interface for the backend, it can be used for the basic debugging of features.

VerCors is a deductive verifier. This means it applies the approach of deductive
logic: it starts from a set of premises, and from those premises it tries to prove a
logical conclusion using a logical system or a set of axioms. Deductive logic and
verification is further explained in Chapter 3.

VerCors does modular verification. This means that verification of each method
only depends on the contract of other methods. Therefore, the correctness of a
method does not depend on the internals of any methods it calls: it only relies on
the contract of called methods. This has the property that it scales well. Once
a method M is proven correct, and other methods do not change their contracts,
the method will remain correct, even if other methods change their implementa-
tions. However, if contracts of other methods change, method M will also need
to be reverified. In particular, modular verification allows several techniques to
be applied in a straightforward manner, such as caching of verification results, or
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Figure 5.1: The architecture of the VerCors tool.

parallelization of method proofs. This modularity also extends to threads: if one
thread is proven correct, this cannot be affected by other threads. That is, any
thread can be added, and the initial thread will still be proven correct. This is
also referred to as “thread-modular verification”.

5.1.1 Architecture
The architecture of VerCors takes a classical approach of structuring a program
analyser, where a series of transformations is applied to an internal representation.

When a program is verified, first the input is parsed and translated into
Common Object Language (COL), the internal representation of VerCors.

Then, depending on the input language and the flags given, many passes are
applied in sequence to simplify the program and abstract away from the input
language. Examples of such passes are the flatten pass, which is responsible for
flattening expressions, or the pvl-encode pass, which encodes PVL primitives for
forking and joining as primitive asserts and assumes.

When the program reaches the end of the pipeline it is fully simplified and
the last pass can be applied. This last pass converts simplified COL into the
representation of the backend. The backend is then applied to the converted
program, and usually returns a pass, fail, or unknown result. Any errors reported
by the backend, such as failed asserts or preconditions, are translated back to the
syntax level of the input and reported back to the user.

5.1.2 Example usage
To illustrate how an end-user would use VerCors to verify properties of their code,
we discuss two examples of verification using VerCors. The first example will be
an introductory example of sequential verification in Java. The second example
will show a basic example usage of VerCors support for concurrency in PVL, as
PVL allows succinct modelling of multiple threads.
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Verification of sequential code

First, we show how to verify a simple sequential piece of toy code. In Listing 5.1
a method is presented that is supposed to calculate the maximum of a pair of
integers.

Listing 5.1: A faulty implementation of a method computing the maximum of two
integers.

1 class C {
2 //@ ensures (a > b ? a : b) == \result;
3 int max(int a, int b) {
4 if (a < b) {
5 return a;
6 } else {
7 return b;
8 }
9 }

10 }

We have provided both a specification and an implementation. The implemen-
tation can then be verified against the specification:

Listing 5.2: vct is the VerCors executable. --silicon indicates that we want to
use the Silicon backend.

1 $ vct --silicon sequential_example.java
2 Errors! (1)
3 === sequential_example.java ===
4 3 int max(int a, int b) {
5 4 if (a < b) {
6 [---------
7 5 return a;
8 ---------]
9 6 } else {

10 7 return b;
11 -----------------------------------------
12 AssertFailed:AssertionFalse
13 =========================================
14 === sequential_example.java ===
15 1 class C {
16 [--------------------------
17 2 //@ ensures (a > b ? a : b) == \result;
18 --------------------------]
19 3 int max(int a, int b) {
20 4 if (a < b) {
21 -----------------------------------------
22 caused by
23 =========================================
24 The final verdict is Fail
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It looks like this code contains a bug, as it does not adhere to the specification.
To fix it, we swap return a; with return b;. Then the code is verified again:

Listing 5.3: VerCors indicates the implementation adheres to the specification.
1 $ vct-dev --silicon sequential_example_fixed.java
2 Success!
3 The final verdict is Pass

Verification of concurrent code

In the next toy example we will show how to verify code with concurrency prim-
itives. For this example we will use PVL, as expressing concurrency in PVL is
concise.

The program in Listing 5.4 is supposed to add two values to the field total.
To speed up matters, the work is divided over two threads. This is done by the
par statement that executes any {} blocks that follow it in parallel.

Listing 5.4: A concurrent example program employing two threads to add two
numbers to a shared field.

1 class C {
2 int total;
3
4 void add2(int amount1, int amount2) {
5 par {
6 total = total + amount1;
7 } and {
8 total = total + amount2;
9 }

10 }
11 }

VerCors can determine that there is a data race in this program without a speci-
fication:
Listing 5.5: Verification output of the example in Listing 5.4. For brevity only the
first error is shown.

1 $ vct --silicon concurrent_example.pvl
2 Errors! (2)
3 === concurrent_example.pvl ===
4 4 void add2(int amount1, int amount2) {
5 5 par {
6 [---------------
7 6 total = total + amount1;
8 ---------------]
9 7 } and {

10 8 total = total + amount2;
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11 -----------------------------------------
12 AssignmentFailed:InsufficientPermission
13 =========================================
14 === concurrent_example.pvl ===
15 4 void add2(int amount1, int amount2) {
16 5 par {
17 [-----
18 6 total = total + amount1;
19 -----]
20 7 } and {
21 8 total = total + amount2;
22 -----------------------------------------
23 caused by
24 =========================================
25 ...omitted...

The reason for this error is because we have not specified the permissions
for total, as discussed in Chapter 4. This is an often recurring problem when
verifying with VerCors, as specifying correct permissions is equal to proving data-
race freedom of the program. Specifying permissions poses a challenge here: we
could give both threads 1\2 permission, but that would only delay the problem
as both threads want to write. Specifying write permission for both threads
would be impossible as it would require two write permissions for total, which
is impossible. The proper solution here is to add locks around the assignment and
supply a lock_invariant, which specifies the resources that are protected by the
lock:

1 class C {
2 int total;
3
4 resource lock_invariant() = Perm(total, write);
5
6 C() { } /* Minimally an empty constructor is needed
7 for the lock_invariant. */
8
9 void add2(int amount1, int amount2) {

10 par {
11 lock this;
12 total = total + amount1;
13 unlock this;
14 } and {
15 lock this;
16 total = total + amount2;
17 unlock this;
18 }
19 }
20 }
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Now VerCors reports that the program is data race free.
1 $ vct --silicon concurrent_example_fixed.pvl
2 Success!
3 The final verdict is Pass

While the permissions error was fixed (and hence the possible data race), we
removed almost all of the parallelism in the program. To reinstate the parallelism
a refactoring is necessary. For example, each thread could have its own temporary
location for adding numbers, to which the thread would then have full write per-
missions. After all the threads finish, these intermediate locations could then be
added together. Since this requires more effort than just a for loop however, this
approach is only useful in the context of big workloads.

Verifying functional correctness of the program would be the logical next step.
However, we do not discuss this here as it is not directly relevant to this introduc-
tion.

5.1.3 Design guidelines
During this work the aim of VerCors was kept in mind: to support developers in
writing reliable concurrent software [8]. Whenever a design decision allows multiple
choices, this aim was used to pick the next step. This resulted in the following two
guidelines.

First, avoid arbitrary limitations if possible. Problems in commercial software
sometimes require solutions that are not elegant, for the sake of efficiency reasons or
time constraints. Examples of this are loops with multiple exit points, or inheriting
for the sake of reuse. While frowned upon, they are sometimes necessary.

Second, we want to allow verification of real programming patterns. If a pattern
is often used in the industry, it should be possible to ensure it is used correctly.

These two guidelines aim to minimize the number of changes needed before a
program can be analysed by VerCors, which increases the chance that the tech-
niques implemented in this work are used.

5.2 Viper
This section discusses the Viper tool, the main back-end of VerCors, and Silver,
the input language of Viper. These are discussed because each transformation in
VerCors aims to simplify the COL AST such that after all transformations have
been done, it is trivial to convert the COL AST into Silver. Therefore, Silver is
the context in which verification of the input program is done.

Silver is the intermediate verification language of Viper. Intermediate verifica-
tion languages (IVLs) ensure that front-ends such as VerCors do not have to deal
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with the specific encoding of variables, objects, and logic constructs. Since this
is facilitated by the IVL, the front-end can focus on encoding the high-level con-
structs into a lower-level language that is in between the complexity of a high-level
language and pure logic. In particular, Silver is a kind of dynamic C-like language,
with first class support for verification and separation logic. We will first discuss
the basic language features of Silver, followed by a brief discussion of methods in
Silver. Finally, we will discuss the facilities for classes in Silver.

5.2.1 Basic language features
The Silver language is a minimal version of a typical object oriented language. It
has several primitive types, such as integers and booleans. It also has several high
level types, such as sequences and sets.

In terms of statements the Silver language is minimal. There are only basic
statements available, such as if, while, goto, assert and assignment to variables.
It does not have return: to return a value from a method, the value has to be
assigned to the return variable. After assigning to the return variable, execution
continues with the next statement.

One notable difference between Silver and a commercial language like Java is
that expressions in Silver do not have side-effects. For example, to encode an arbi-
trary Java expression, the expression will have to be flattened into assignments into
intermediate variables. The only side-effects that are allowed are direct variable
assignment, and method calls.

Silver is not intended for execution. Among other things, it allows forall and
exists (∀, ∃) quantifiers in arbitrary expressions. Except for a few specific cases,
these sort of expressions are not checkable if executed.

In Listing 5.6 basic usage of Silver statements is shown. On line 6 a sequence
of even numbers is constructed. This property is checked by the assert on line 7.
The sequence is returned by assigning it to the return variable l on line 8.

Listing 5.6: Example of a Silver program using sequences and the forall quantifier.
1 method addToList(n: Int) returns (l: Seq[Int]) {
2 var x: Int
3 x := n * 2
4 assert x % 2 == 0
5 var y: Seq[Int]
6 y := Seq(x, 4)
7 assert (forall i: Int :: 0 <= i && i < y ==> y[i] % 2 == 0)
8 l := y
9 }
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5.2.2 Methods
Silver has methods, but does not allow the user to overload these: any method
must have a unique name. Methods are not defined on a class or object: they are
independent definitions, and hence there is not a keyword similar to this in Java.

Contracts are part of the built-in support for verification in Silver. These
contracts are checked at both the call site and in the implementation. Contrary to
Java, method implementations are not required: if an implementation is left out,
the contract can still be used. This can be used to model functionality provided
by the runtime environment that cannot be implemented, not yet implemented
methods or to leave out methods explicitly that should not be verified.

In Listing 5.7 a basic example is shown of a Silver program. The method triple
has no implementation, because only the contract is needed to reason about the
program.

Listing 5.7: Example of a toy Silver program that doubles and triples numbers.
1 method double(x: Int) returns (y: Int)
2 requires x > 0
3 ensures y == x + x
4 {
5 y := 2 * x
6 }
7
8 method triple(x: Int) returns (z: Int)
9 requires x > 10

10 ensures z == x + x + x
11
12 method compute() {
13 var myX: Int
14 myX := 10
15 myX := double(myX)
16 myX := triple(myX)
17 assert myX == 60
18 }

5.2.3 Classes
Viper does not have classes and structs. Instead, it has functionality that is more
expressive with which classes or structs can be emulated. It requires that all fields
must be defined globally. These fields can then be used on any reference. The
caveat is that fields can only be accessed if proper permission is available: reading
requires positive permission, writing requires a permission of one. In other words,
permissions are used to turn “on” and “off” certain fields on specific references.
The syntax for a permission is as follows: acc(location). Listing 5.8 shows an
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example of using fields in Silver. While assignment to r.y fails, this is not because
the field does not exist on r, but because there is no permission. If a write
permission were present, the assignment would have succeeded.

Listing 5.8: Example usage of fields in Silver.
1 field x: Int
2 field y: Int
3
4 method assignToField(r: Ref)
5 requires acc(r.x)
6 {
7 r.x := 3
8 r.y := 4 // Fails: insufficient permission to access r.y
9 }

Because Silver does not have classes or structs, it also does not have construc-
tors like in Java. It is the job of the frontend to encode these language features in
Silver.

40



Chapter 6

State of the Art

This chapter gives an overview of Viper frontends, deductive verifiers, and other
static verification tools and disciplines. An overview of all the tools discussed in
this chapter is given in Table 6.1. The chapter is divided into four sections with
the following subjects:

• Tools that apply the strategy of using Viper as one of the verifier backends.

• Deductive verifiers that verify a commercial language.

• Tools that have achieved major milestones or have state-of-the-art features
not found in verifiers of commercial languages.

• The benefits and shortcomings of approaches radically different from deduc-
tive verification, and their relation to VerCors.

The main purpose of this chapter is to substantiate our observation that there
are few static verifiers that can reason about a big enough subset of their input
language such that they are practically usable, support practical language features
such as inheritance and exceptions, and also support concurrency. The ones that
do are Nagini and Verifast, discussed in Section 6.1 and Section 6.2 respectively.
One tool deserving an honourable mention is jStar, which supports inheritance but
not exceptions. It is discussed in Section 6.3.

The tools discussed have varying levels of support for concurrency. We cate-
gorize these levels into three categories:

• No support: concurrency is not a concern for the tool and code is assumed
to be sequential.

• Implicit support: concurrency can be modelled and verified, but the tool
provides little to no support for starting threads or computation processes.
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• Full support: the tool can model concurrent processes and access to shared
memory.

To illustrate, a tool with implicit support at the time of writing is Prusti [4]:
it can model concurrency, but is not far enough developed yet to allow the user
to start concurrent threads. In terms of complexity, having full support is often
harder than implicit support, as starting a thread often requires at least some
specification of the standard library of the language.

There are many static verifiers for commercial languages, and even more static
verifiers in general. To keep this chapter compact and the discussion relevant,
verifiers that reason about verification languages are mostly ignored.

Verification languages are languages that are often designed with a specific
purpose, such as debugging a back-end or to have a clean formal semantics. An
example of such a language is PVL, as supported by VerCors, which can be used
to debug the back-end or to model not yet supported languages.

While static verifiers reasoning about verification languages can be challenging
to design and implement, the focus of this work is on practical language features
such as inheritance and exceptions. These features are usually not present in
verification languages and therefore these verifiers are not included.

A notable exception to this is Why3, which has support for exceptions, albeit a
fairly clean and mathematical version of exceptions. It is discussed in Section 6.3.

6.1 Viper frontends
There are currently several Viper frontends besides VerCors at various levels of
functionality. These are Nagini, Prusti, Soothsharp, Rust2Viper and Scala2Sil.

The most notable Viper frontend at the time of writing is Nagini. Nagini [23]
is a static verifier for Python developed at ETH Zürich. It supports Python 3
with mandatory type annotations as outlined in [57]. This includes inheritance,
exceptions, and full support for concurrency. It also allows verification of finite
blocking and input/output behaviour. From all the Viper frontends, Nagini is the
most complete in that it supports almost the entire input language. The support of
Nagini for exceptions and inheritance will be discussed further in Chapter 9. This
is because it is the only checker that has the same level of support for exceptions
and inheritance that we are trying to achieve.

Besides Nagini and VerCors, the other most actively developed Viper frontend
is Prusti. Prusti [4] is a static verifier for Rust using Viper as a backend developed
at ETH Zürich. It employs the key insight that type checked Rust programs al-
ready incorporate all the information necessary to derive permissions for reading
and writing to variables. Therefore, in function contracts only functional prop-
erties have to be specified; permission properties and magic wands are derived
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Name Development Viper Concurrency Exceptions Inheritance
Nagini Current Yes Full Yes Yes
Prusti Current Yes Implicit No No
Soothsharp Prototype Yes Implicit No No
Rust2Viper Prototype Yes Implicit No No
Scala2Sil Prototype Yes Implicit No No
Frama-C Current No Full No No
Verifast Current No Full Up to finally Yes
KeY Current No No Yes Yes
OpenJML Current No No Yes Yes
JaVerT No No No Yes No
K Current No Full − −
Spec# No No No Yes Yes
jStar No No Implicit No Yes
LOOP No No No Yes Yes
Krakatoa No No No Yes No
VCC No No Full − −
Caper Unclear No Implicit − −
Why3 Current No No Yes No

Table 6.1: This table summarizes all tools discussed in Chapter 9. The “Viper”
column indicates if the tool is a Viper frontend. The “Development” column
indicates if the tool is still being developed, with “Current” indicating it is, and
“Prototype” indicating it was developed as an experimental prototype.
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automatically. Rust features supported by Prusti are among others: primitive
types, several compound types (enums, tuples, structs), functions, methods, and
traits. Several features like unsafe code and closures are not yet supported but
might be in the future. It currently only has implicit support for concurrency.

The next three Viper frontends are Soothsharp, Rust2Viper, and Scala2Sil.
They are all prototypes resulting from Masters theses that are no longer being
developed. They do not have full support for concurrency, but since they all
employ separation logic they have implicit support for concurrency because they
specify permission to fields through separation logic. While they are not as mature
as the previously mentioned verifiers, they illustrate what is possible in the space
of Viper frontends.

Soothsharp [34] is a C# verifier developed at the Charles University of Prague.
Soothsharp uses Viper as a backend for its analysis. It supports various C#
features such as permissions, overloading, arrays, and classes. However it currently
still lacks features such as exceptions, concurrency and inheritance.

Rust2Viper [27] is a Rust verifier developed at ETH Zürich. It uses Viper
as its backend for analysis and supports various features such as basic control
flow, borrow checking, enums and structs. It does currently not support traits nor
concurrency. While the lineage is unclear, it seems that Rust2Viper is a predecessor
to Prusti, as they share some syntax but Prusti has more features.

Brodowsky developed a Scala verifier which from here on will be referred to
as Scala2SIL [10]. It uses Viper as its program analysis backend and supports
a significant subset of Scala features, such as subtyping, advanced type system
features, permissions and classes. However it currently still lacks features such as
exceptions, concurrency, and inheritance.

6.2 Deductive verifiers for commercial languages
In this category, first four well-known mature checkers will be discussed: Frama-C,
Verifast, KeY, and OpenJML. They were selected because they are mature tools,
and give a good indication of what is the state of the art for deductive verifiers.
Then two more recent experimental verifiers will be discussed, namely JaVerT and
the K semantic framework. These were selected to show that there are also tools
that verify dynamic languages, as well as tools that do not follow the prevalent
“frontend-backend” architecture.

The Frama-C [43] analyser is a platform for static analysis of C code. It has
various modules for analysing C code. Among others, the “Value” plugin does for-
ward dataflow analysis, the “WP” plugin generates verification conditions using a
weakest precondition calculus, and the “Mthread” plugin extends the “Value” plu-
gin to concurrent environments. The “Mthread” plugin computes which variables
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are shared safely and which variables are prone to data races. Therefore, Frama-C
has full support for concurrency in the sense that it can detect data-races and rea-
son about if mutexes protect a shared memory region properly. However, it does
not have explicit support for modelling concurrency besides the use of locks in the
code. Furthermore, Mthread can also output all interleavings between threads,
showing which instructions might lead to a runtime error. While powerful, this is
not thread-modular (as defined in Section 5.1), which can be considered a down-
side.

The Verifast [65] tool is a static verifier for Java with full support for concur-
rency. It is not explicitly stated what the supported Java features are. However,
from the examples included with Verifast it can be concluded that it is a subset
of Java SE 7. Verifast facilitates inheritance through abstract predicate families,
which this work also uses and are further discussed in Chapter 4. For managing
access to resources in the context of concurrency and threads it uses separation
logic. It verifies programs by using the symbolic execution algorithm for separation
logic outlined in [7]. While Verifast and VerCors are both deductive verifiers, their
modes of use are quite different. Verifast is not so much focused on automation
of program verification, but more on expressiveness and debugging [40]. VerCors
also allows this style, but endeavours for more automation of the proving process
and making formal verification of software usable for practical languages [8].

KeY is another static checker for Java. It supports the sequential subset of
Java Card and Java 1.4 (released in 2002). This means KeY can reason about
exceptions, inheritance, dynamic dispatch, strings, arithmetic and more [1, 42].
KeY supports some extra modern features like enhanced for loops and compile-
time removal of generics [42]. While old, it is still frequently used by researchers
and teachers, such as [29] and [2]. The tool is quite mature. Its interface is
different from VerCors in the sense that KeY is more similar to a (automated)
theorem prover. When a proof is being constructed for a program and KeY gets
stuck the user is presented with the intermediate state of the proof. The user can
then select proof rules and axioms to apply to the intermediate state, hopefully
simplifying or splitting up the state, such that KeY can continue again on its own.

One more checker targeting sequential Java is OpenJML [14]. It supports a
subset of Java 7, including exceptions, inheritance, and partial support for gener-
ics. It is intended as a successor of ESC/Java and ESC/Java2. It improves upon
ESC/Java2 by removing sources of unsoundness and incompleteness and support-
ing a bigger subset of Java.

The past 3 years, checkers for dynamic languages have also been getting more
attention. JaVerT [24] (short for “Javascript Verification Toolchain”) is a static
verifier for sequential JavaScript developed at the Imperial College of London.
They target ECMAScript 5 “strict mode”, which means they support prototy-
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pal inheritance, exceptions and function closures, among other JavaScript lan-
guage features. JaVerT converts JavaScript into its own Javascript Intermediate
Language (JSIL), which is symbolically executed to generate proof obligations,
which are discharged through Z3. They implement their own solver for separation
logic assertions.

While prototypal inheritance can be used to model classical object oriented
inheritance, it is not the same. JaVerT allows the user to define a class using the
prototypal inheritance features of JavaScript. The user can then specify a contract
for the methods in the prototype. However, to the best of our knowledge, JaVerT
does not provide a mechanism such as specification inheritance, abstract predicate
families, or static/dynamic contracts (all discussed in Chapter 8), to subclass and
specialize JavaScript classes based on other classes. It does allow prototypes to be
switched out for other prototypes, but the contracts of these prototypes must be
exactly the same. This results in a system more limited than what inheritance in
Java allows in general.

And lastly, there is the approach of the K semantic framework of generating
static verifiers from a programming language semantics. It is developed by the
University of Illinois and the Alexandru Ioan Cuza University of Iaşi. It can al-
ready generate verifiers for Java, C and JavaScript [67]. K builds on a theory
of a language-independent proof system. This combined with several language-
independent axioms and a separate programming language semantics makes it
possible to generate verifiers. At the core of K is “reachability logic”, which re-
places the often used Hoare logic in static verifiers. Reachability logic allows to
directly encode the executable semantics of a programming language into an oper-
ational semantics. Ştefănescu et al. have extended K with support for concurrent
semantics [66]. The direction of this research is promising. However, work still
remains to be done to make this approach practically usable as generated verifiers
are relatively slow. Furthermore, the K semantic framework can only generate
model checkers and interpreters, but not yet deductive verifiers. Work on adding
this functionality is ongoing.

6.3 Milestone tools
Over the years a few well known tools have been decommissioned: Spec#, jS-
tar, LOOP, Krakatoa and VCC. These were notable checkers that achieved major
milestones such as being integrated into a well-known IDE, were the first to for-
mally verify important design patterns, or supported a substantial subset of the
input language. They will be discussed first, then Caper will be discussed, which
implements static verification of “fine-grained concurrency”. Lastly, Why3 will be
discussed, a verification backend with built-in support for exceptions.
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Spec# is a verifier developed at Microsoft Research [5]. It can verify a sequen-
tial superset of C#, including inheritance, exceptions, and frame conditions. It can
verify the specified contracts both statically and dynamically. Spec# uses Boogie
as its solver backend. When Spec# was still in active use, it was recommended to
use the Visual Studio plugin when developers wanted to use it.

jStar [20] is a verifier developed by Queen Mary University of London, Microsoft
Research Cambridge, and Cambridge University. It verifies Java and supports in-
heritance through abstract predicate families, but not exceptions. It is not stated
explicitly if jStar targets sequential or concurrent Java, but since it uses separa-
tion logic it at least has implicit support for concurrency. It allows encoding of
ownership through separation logic, and can infer some loop invariants through a
fix-point algorithm. The supported cases can be extended by using user-supplied
“abstraction rules”. jStar contains a symbolic execution module for generating
verification conditions and an embedded theorem prover that discharges the ver-
ification conditions. jStar can verify real object-oriented programming patterns
such as the visitor pattern, the factory pattern, and the pooling pattern [20].

LOOP [39] is a verifier developed at Radboud University Nijmegen. It verifies
sequential Java, including exceptions and inheritance. It supports a complete
subset of Java: static/non-static fields, methods and overloading of these methods.
Jacobs and Poll claim the only major features not supported are threads and
inner classes. The approach of LOOP was to compile Java programs with JML
annotations into a shallow embedding in PVS. The verification of the program and
the specification thus depended on proving it correct in PVS. The benefit of this
approach is that it gives the user the full power of an interactive theorem prover
to prove the program correct. However, the drawback is that there is a barrier for
using LOOP: the user needs to be skilled at both JML and PVS to be productive.

Krakatoa [47] is a verifier developed at INRIA. It verifies sequential Java and
has support for exceptions. It does not support inheritance, but attempts have
been made to incorporate this functionality [21]. Krakatoa uses the Why verifi-
cation platform and Coq as back-ends. The general approach of Krakatoa is to
transform a Java program into a corresponding representation in WhyML, the cus-
tom input language of the Why verification platform. Why is then used to generate
proof obligations in Coq, an interactive theorem prover. If these proof obligations
can then be proven in Coq, it can be assumed the original Java programs re-
spected their specifications. By taking this approach it was similar to LOOP, as it
depended on an interactive theorem prover to prove correctness. Marché, Paulin-
Mohring and Urbain have focused primarily on this approach (specifically in the
context of Why 2.41), but we expect that with the developments of Why3 some
proof obligations that originally required Coq can now be proven by Why3 itself.

Verifying Concurrent C (VCC) [13] is a static verifier originally developed by
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Microsoft. It is no longer under development. VCC can verify concurrent C code
and also has support for x86 assembly, which often occurs inline in critical C code.
It uses Boogie [45] as the backend prover. Among other features, VCC allows the
user to express constraints using typestates, ghost state, and frame conditions.
The primary goal of VCC was verification of the Microsoft Hyper-V hypervisor.
[13] reports that at least 20% of the Hyper-V codebase has been formally verified
with VCC.

Caper [18] is a static verification tool for verifying fine-grained concurrent pro-
grams. “Fine-grained” in this context implies that write access to a single resource
can be shared between multiple process. To paraphrase an example from [18]:
given an integer variable x, theoretically one could assign “increment permission”
to one process and “decrement permission” to another. Using these permissions,
both processes could infer an upper or lower bound of x respectively during their
lifetime, even though they both have write access to the variable. Caper allows
specifying these kinds of constraints and verifying them. Caper applies “region
aware” symbolic execution and separation logic to verify data structures such as
a spin-lock, ticket lock, and a stack-based bag. It has a custom input language for
describing these data structures.

Why3 [9] is a verification environment similar to Viper. It verifies WhyML
(Why Meta Language), which is intended as an intermediate language or back-
end for other verification tools. Why3 has been used as a back-end in Frama-C,
Krakatoa, and Spark2014. It has support for many back-ends that can discharge
verification conditions: CVC4 (Cooperating Validity Checker 4), Coq, Z3, Isabelle,
and others. It does not support concurrency, however, parallelism can be modelled
on top of it. For instance, Santos, Martins and Vasconcelos modelled a protocol
on top of Why3 and subsequently proved the protocol to be free of deadlocks [63].
They did this by implementing an MPI-like interface, and then transforming the
protocols to Why3 code using the MPI interface.

Besides WhyML, Why3 can also verify Micro-C and Micro-Python, subsets of
the original languages. We still include it in this overview because it has support
for exceptions. The model of exceptions supported is clean. There is no finally,
no subtyping when catching exception types, no checked/unchecked distinction,
or in short: no practical warts. It more or less allows the user to define multiple
return types for a function, discriminated by the types the functions can throw,
combined with the ability to return early. Furthermore, exception types can only
be used when raising an exception, catching an exception, or defining the types
thrown by a function, and not for other purposes such as variable types.
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6.4 Other approaches to static verification
Besides the deductive verification approach as implemented by the programs above
there are also two other approaches to static verification of software: model check-
ing and interactive theorem proving. This section describes these two approaches
and discusses how they differ from deductive verification.

Model checking Model checking is used when the safety and liveness require-
ments of an application are strict. It allows the user to model the entire state space
of their programs and specify functional invariants and safety/liveness constraints
that have to hold at various points in the program. A model checker can then
traverse the specified state space and compute whether or not these constraints
hold. To remain efficient, model checkers often have optimizations to reduce this
state space.

Model checking is useful if a property needs to be checked across all the states
of a system, or if it needs to be checked that a certain state is unreachable.
Conversely, if a property needs to be proven after a certain point in the program,
or an implication needs to be proven, deductive verification is often a better fit.

Representative examples of model checkers are NuSMV [12], Spin [31] and
UPPAAL [17].

Interactive theorem proving Interactive theorem provers (ITPs) are useful
when proving the functional correctness of a system. This system is usually a
logic or language, but can also be a model of a concrete physical system.

ITPs allow the user to specify formal structures and functions, and to construct
theorems out of these formal elements. The ITP can then try to prove these
theorems automatically using various approaches, often referred to as “tactics”.
These tactics apply rewriting rules or proof steps specific for that tactic. When a
tactic cannot automatically prove a lemma, the user can try a different tactic or
apply proof steps manually.

The “interactive” part in ITP refers to the explorative and iterative nature
of ITPs. Sometimes an ITP can prove a theorem in a single go. Other times
an ITP gets stuck, and the user has to try different tactics to get the ITP to
continue. If everything fails, a user can choose to try and either apply manual
proof steps, or prove intermediate lemmas the ITP is missing, such as associativity
or commutativity of an operation.

In theory, ITPs could be used for verification of commercial languages like
Java and C. Unfortunately ITPs are currently not a good fit for software verifi-
cation because their interface is intended for logicians and mathematicians. The
explorative nature of ITPs, strange syntax, and a steep learning curve make it
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less attractive for software developers in general. However, there are efforts to
challenge this status quo, such as [44], which tries to bridge the gap between ITPs
and commercial language tooling.

Representative examples in this category are Isabelle [48], Coq [11], and PVS [15].
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Chapter 7

Exceptions

This chapter is about exceptions and their implementation for Java in VerCors.
First the design considerations of support for exceptions are discussed, as well as
three candidate encodings in Silver. Then the concrete implementation in VerCors
is discussed, followed by an evaluation.

7.1 Design considerations
In this section we discuss design considerations for the exception transformation.
We start by defining the problem, and outlining what aspects of exceptions are
considered and what not. We then discuss the concurrent aspects of exceptions,
and then discuss the semantics of exceptions used in the transformation. Finally,
we discuss why finally makes encoding exceptions in Silver difficult, and we
compare several candidate encodings.

7.1.1 Problem statement
Verification of exceptions can be interpreted in different ways. Therefore it is
useful to define how it is approached in this work.

Verification of exceptions can be interpreted as formal reasoning about lan-
guage features in the context of exceptions. This translates into supporting the
various keywords that relate to exceptions: throw, try-catch-finally, signals,
and others.

However, verification of exceptions can also be interpreted as formal reasoning
of standard library features in the context of exceptions. This is related to language
features but slightly different in the sense that it focuses more on actual specifica-
tions. The most interesting example of this is Thread.UncaughtExceptionHandler.
This is the handler that is called when an exception is not handled in a Thread.
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Listing 7.1: Example of conditional permission because of allocation within if.
The field f is only available if the if block is executed, and hence dependant on
the value of p.

1 void foo() {
2 MyObject o;
3 if (p) {
4 o = new MyObject();
5 }
6 //@ assert p ==> Perm(o.f, 1\1);
7 }

This terminates the thread, which often conceptually translates into a failure or
loss of work. The user is responsible for using this UncaughtExceptionHandler
and recovering gracefully from a failure. It is challenging to specify this prop-
erty, however progress in this area is being made by works such as ‘Provably Live
Exception Handling’ [37].

Other examples of verification of standard library features related to exceptions
are NumberFormatException as thrown by Integer.parseInt, or InterruptedException
as triggered by Thread.interrupt.

This work focuses primarily on the first interpretation of verification of ex-
ceptions: to implement support for the primitives that are used when developing
programs that throw and catch exceptions.

7.1.2 Concurrent considerations
This work focuses on verification of concurrent programs. To the best of our knowl-
edge, for exceptions there do not seem to be problems in terms of concurrency.
However, the combination of separation logic and exceptions might cause practical
usability problems.

One example of this are conditional permissions. These are permission that
are only available if a certain condition is met. An example of such a conditional
permission is presented in Listing 7.1.

Such permissions are not problematic for Viper to work with, as they are well
defined. However, they might lead to unclear or verbose specifications because
permissions are only usable once certain conditions have been met. In the example,
this condition is only p, but in a more complex example this could involve multiple
variables and methods. Hence, this is purely a usability and interface issue, and
less a technical or theoretical issue (unless conditional permissions are bad for
verification performance - but we have not seen evidence for this).

It is possible that exceptions cause such conditional permissions to occur more
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often. For example, if an exceptions can be thrown halfway through a try block,
the state after the try block depends on whether the exception was thrown or not.

Solutions can already be developed that limit occurrence of such conditional
permissions. For example, an “exceptional invariant” can be imagined that has to
hold both at entry and exit of a try-catch block, as well as at the end of catch
clauses. However, in our opinion more concrete experience with exceptions and
separation logic is needed to find out if usability of exceptions is problematic in the
long term, as that experience is currently lacking. If more notational convenience
is needed for exceptions in separation logic, an informed solution can be designed
based on detailed knowledge of the problem.

7.1.3 Exception semantics
Before a transformation from exceptions to Silver can be defined, first the semantics
of exceptions as verified by VerCors must be defined. Specifically, it must be
defined what the sources of exceptions are in Java.

If The Java language specification [41] is interpreted to the letter exceptions
can originate from many places. Some examples include but are not limited to:

• Class loads can trigger OutOfMemoryError,
• The increment operator (i++) can trigger OutOfMemoryError if autoboxing

is required,
• Array.clone can throw InternalError if the element type is not cloneable
• and new can trigger OutOfMemoryError.

These kinds of exceptions are called “spurious exceptions”: exceptions that can
occur almost anywhere. Note that spurious exceptions cannot occur randomly.
Instead, it is the case that the places where exceptions can come from are many.
The annotation burden on the user would be enormous, and hence we cannot
require the user to annotate for these exceptions as well.

To avoid this problem and remain productive this work recommends a “best
effort” approach where VerCors reasons about a constrained but useful subset of
exceptions. Informally, the approach implemented in this work allows verification
exceptions thrown by throw and method calls. We think this will not cause major
problems in the foreseeable future, as most developers only consider these two
sources of exceptions to begin with.

Formally, if VerCors does not report any errors when verifying a program it
implies the following guarantee:

For all methods, if an exception is thrown (originating from either a throw or a
throwing method call), it is either handled in a surrounding catch, or the
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method declares the type in a signals or a throws clause. In addition, several
designated exceptional cases can also not occur.

At the time of writing “several designated exceptional cases” include:

• NullPointerException when a null reference is dereferenced.

• ArithmeticException when division by zero or modulo zero takes place.

• ArrayIndexOutOfBoundsException for out of bounds array accesses.

VerCors disallows these situations to occur, so the exceptions also cannot occur
by default. However, nothing prevents this set from being extended with static
detection of other exceptional situations.

Practically speaking, this guarantee implies that all declared exceptions origi-
nating from most practical places where you would expect them are handled with
appropriate catch clauses. We leave annotation and verification of spurious ex-
ceptions for future work.

7.1.4 The finally encoding problem
If finally is not considered, encoding abrupt termination into goto is straight-
forward. This is because the description of the semantics as given in [41] can be
interpreted literally. An overview of the transformation is as follows:

• throw jumps to the nearest handler, or to the end of the function if there is
no handler.

• After a catch clause execution continues after the try.
• break jumps to after the nearest loop.
• return jumps to the end of a function.
• If a method call throws it either jumps to the nearest handler or to the end

of the method.
• After a try block execution should continue after it.

However, when finally is introduced, a more intricate transformation is needed.
This is because contrary to all other abrupt termination primitives, at the end of
a finally clause it is not directly clear where to jump to.

Consider the example in Listing 7.2. The lines drawn indicate how control
flow would progress. With the control flow explicitly drawn, reasoning about the
control flow is easy. However, without the lines it is less clear what exactly must
happen on line 11. If break was just executed, control flow needs to to jump to
after the while on line 14. If return was just executed, control flow needs to
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Listing 7.2: Example of ambiguous control flow in the presence of finally.
Control flow from break and returnis made explicit through arrows.

1 void foo() {
2 try {
3 while (c) {
4 try {
5 if (p) {
6 return;
7 } else {
8 break;
9 }

10 } finally {
11 /* Ambiguity */
12 }
13 }
14
15 } finally {
16
17 }
18
19 }

jump to the next finally on line 16. Without any further information, there
is an ambiguity on line 11 which can only be resolved by knowing what kind of
statement was just executed.

Therefore to encode finally blocks, what “kind” (returning, breaking, or
throwing) of control flow currently applies needs to be encoded. Furthermore,
once labelled breaks are added to the language it becomes even more complicated
since which specific loop is to be broken out of also needs to be tracked. An
example of this is shown in Listing 7.3, where again all code paths from abrupt
termination are drawn. Whenever a labelled break is used within a try-finally,
additional jump destinations will have to be managed.

We conclude that if finally is used in a method, extra measures need to be
taken to encode all possible jumps correctly.

7.1.5 Candidate encodings
Several candidate encodings for finally and the rest of the abrupt termination
primitives are possible. We discuss the three encodings known to us next. The
chosen encoding (via exceptions) is outlined in detail in Section 7.2.

While the first and second of these encodings have appeared in some form in
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Listing 7.3: Example code showing different code paths when a labelled break is
added.

1 void foo() {
2 try {
3 loopA: while (p) {
4 while (q) {
5 try {
6 if (r) {
7 break;
8 } else if (s) {
9 break loopA;

10 } else {
11 return;
12 }
13 } finally {
14 /* Ambiguity */
15 }
16 }
17
18 }
19
20 } finally {
21
22 }
23
24 }
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an implementation before this work, we have not yet seen an effort to categorize
and compare the approaches.

Inlining The first option that comes to mind is to inline all finally blocks in
places where normally control flow would jump to the next place of interest. For
example, before a throwing method call would jump to a handler, the finally
clause could be executed by inlining it right there.

This option is interesting because it is conceptually straightforward. It is also
used in Java compilers [28, p. 3], informally showing that the approach works.

The downside of this encoding is code duplication. First, it is bad for VerCors,
since it will blow up the amount of memory needed to store an AST with encoded
finally clauses. Even though this blow-up is minimal, as empirically shown
in [25], this is still wasted memory. Second, it is bad for the prover backend,
as duplicated code might cause duplicate proof obligations, which in turn will
increase the time needed to prove the program correct. We have performed a small
experiment that shows that this is indeed the case for VerCors. This experiment
is discussed in Appendix B.

Control flow flags The second option is the optimized version of the first option:
finally blocks are not inlined, but instead a flag is set whenever the mode of
control flow changes. For example, when a return is executed, the flag is set
to a constant called MODE_RETURN. This flag can then be queried at the end of a
finally clause to determine where next to jump to. There should be values for
each available mode of abrupt termination (i.e. break, return, throw), as well as
a mode for every label that can be broken from.

As far as we can tell this is technically possible, but getting the bookkeep-
ing right and keeping track of all the labels and modes available seems difficult.
Furthermore, at the end of every finally clause there will be a big if statement
determining where to jump next, unless the possible labels at that point are pruned
in a smart way. This big if statement again is tricky to get right because it is
non-modular and needs information from other places in the program.

One example of a verifier that uses this approach is Nagini, as discussed in
Section 9.1.

Another approach to encode finally into goto’s similar to the control flow
flag approach is presented in [25]. When that paper was published the JVM used
to encode finally blocks as JVM subroutines, which are routines local to the
method that do not allocate extra stack space. Freund suggests finally can
instead be encoded as a code segment that is jumped to and from using goto.
Additionally, when jumping to this block an extra value has to be supplied in an
auxiliary variable that indicates where the finally block must jump to when it is
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label l_S is fresh

010: call S
011: ...
030: call S
031: ...
100: subroutine S:
101: ...
120: subroutine return

=⇒

009: push 0
010: goto l_S
011: ...
029: push 1
030: goto l_S
031: ...
100: label l_S:
101: ...
120: pop into r1
121: if r1 == 0 goto 011
122: if r1 == 1 goto 031
123: goto panic

Rewrite rule 1: Transform subroutine to goto. In pseudo-assembly.

finished. An abbreviated version of this transformation in pseudo-assembly can be
found in Rewrite rule 1.

While this approach succeeds in avoiding duplicating code needlessly, it con-
tains the same downside as the control flow flags approach. Each finally must
communicate its flags and values to the call sites, and each finally must also
know about all the sites it is called from, so it can jump back to them afterwards.
Similar to the control flow flags approach this results in an if statement at the
end of the finally statement that introduces complexity at other places in the
program.

Via exceptions The third option is to consider abrupt termination from an
exceptional point of view. When only exceptional control flow is considered the
question of where to continue at the end of a finally clause is simplified:

• If an exception is currently being thrown, execution should continue at the
next catch clause. If there is no such clause, either go to the next finally,
or otherwise to the end of the function.

• If an exception is not being thrown, continue after the try-finally block.

Note that the choice of where to jump at the end of the finally clause has
become more modular: it does not matter how many exceptions or labels are in
play, as long as the next finally or catch clause is known. By homogenizing
control flow into the exceptional model, the choice at the end of a finally clause
becomes straightforward.

A downside of this encoding is the requirement for this simplification to apply:
all other abrupt termination must be removed or transformed into exceptional
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type l_Ex is fresh

l: while (b) {
...
break l;
...

}
=⇒

class l_Ex
extends Throwable
{}

...
try {

while (b) {
...
throw new l_Ex();
...

}
} catch (l_Ex e) {}

Rewrite rule 2: Transform break to throw.

control flow. This is extra work, but we argue that it is not difficult. An example
of how break can be encoded as throw can be seen in Rewrite rule 2. The transla-
tion is similar for labeled statements in general and return. This combined with
the fact that it leads to a more straightforward encoding leads to the choice of
implementing this encoding in VerCors. Additionally, if finally is not present,
the basic encoding into goto can be used.

A semantic downside of compiling to exceptions is that information is lost.
Since all control flow is exceptional after the transformation, exceptional control
flow is the rule and not the exception. We do not believe this is a fundamental
problem. If this information is needed it can be encoded in the AST. This ensures
that synthetic try-catch and throw can be discerned from authentic ones. By
adding an extra flag even the current control flow can be identified as synthetic
exceptional or natural exceptional. However, it does introduce extra work and
makes the transformation less elegant, whereas the other approaches preserve this
information syntactically by default.

While we discovered this encoding independently, a verifier that uses a com-
parable approach is Krakatoa. We discuss the differences with our encoding in
Section 9.7.

7.2 Transformation of abrupt termination
This section discusses the transformation of a language with abrupt termination
and exceptions to a language without. First a brief overview is given of the parts of
the transformation, and then each part is discussed in detail. The transformation
closely mirrors the implementation in VerCors.

The transformation consists of three distinct phases. There is the pre-processing
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phase, the abrupt termination phase, and the post-processing phase. The phases
are outlined in Figure 7.1.

Consistency

Simplify AST

finally?

break, return
to goto

break, return
to throw

Exceptional control
flow to goto

signals to ensures

Abrupt termination

No Yes

Figure 7.1: Summary of the transformation of a language with exceptions and
finally to a language without exceptions and finally.

The pre-processing phase is responsible for doing a consistency check and stan-
dardizing the AST. The consistency check consists of type checking and checking
for correct use of Java language features, such as using existing labels for breaks.
Since this is not relevant for this work, it is not discussed. Standardizing the AST
is discussed in Section 7.2.1.

Then the abrupt termination phase follows. Here it is decided if abrupt termi-
nation can be encoded as goto or as throw, depending on the use of finally in
the program. This is purely a cosmetic decision: in our opinion the goto encoding
produces slightly more readable Silver programs. The goto and throw encodings
are discussed in Section 7.2.2 and Section 7.2.3 respectively.

After the abrupt termination phase, all abrupt termination primitives are either
encoded as goto or encoded as throws. Only exceptional control flow and signals
need to be encoded in this phase. The steps involved in this phase are described
in Section 7.2.4 and Section 7.2.5 respectively.

The transformation steps described in the next sections include rewrite rules.
These rewrite rules indicate visually what parts of the AST are shifted around
to achieve the goal of the transformation step. They mimic proof rules in their
appearance, but are not as formal. In these rewrite rules, such as Rewrite rule 4
on the next page, above the line any conditions for the rewrite to take place are
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listed. Below the line, there are two listings. The left listing shows what pattern
must be matched for the rule to apply. The right listing shows what program the
match should be replaced with. Triple dots (...) are used as wildcards.

7.2.1 Simplifying AST
Before abrupt termination can be encoded into goto, it must first be ensured that
the AST is in a minimal and consistent form. This is done through the following
steps:

Encode throws as signals throws is encoded as a signals clause with the
default post-condition true if there is not yet a signals clause present for that
type. This means that after this step, all types a method can throw can be derived
from the signals clauses. This also means the throws attribute can be discarded.
See Rewrite rule 3.

E does not yet occur in signals

void m() throws E;
=⇒

//@ signals (E e) true;
void m();

Rewrite rule 3: Encode throws as signals

Add implicit labels Unlabelled breaks and continues require analysis of the
surrounding code to know where the control flow will continue. Making these
implicit labels explicit simplifies later transformation steps. Additionally, this
step also ensures the added labels are unique. See Rewrite rule 4.

l is fresh target(break) = l
while (b) {

... break; ...
} =⇒

l: while (b) {
... break l; ...

}

Rewrite rule 4: Label while statements. l can be chosen freely, as long as it is
unused. This rule only matches if the break breaks from the matched while loop,
and not some other while loop.

Encode continue as break continue can be encoded as break without loss of
semantics. This has the benefit that later code does not have to consider continue,
but only break, return and throw. See Rewrite rule 5.
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true

l: while (b) {
... continue l; ...

} =⇒

l: while (b) {
inner_l: {

... break inner_l; ...
}

}

Rewrite rule 5: continue to break

7.2.2 break, return to goto
If finally is not used, break and return can be encoded into goto. This is
achieved through the following steps:

Encode break break is encoded as goto. This is done by emitting an after_l
label after every labeled statement with label l and replacing every break l; with
goto after_l;. See Rewrite rule 6

true

l: while (b) {
... break l; ...

} =⇒

while (b) {
... goto after_l; ...

}
after_l:

Rewrite rule 6: break to goto for while. This can be generalized to other com-
pound statements with labels.

Encode return return is encoded by replacing a return with an assignment
into a return variable named result, an assertion of the post-condition and a
jump to the end of the function. At the end of the function, the return variable
result is returned. This is to allow later transformation steps to pick a different
way of encoding the return value if needed. See Rewrite rule 7.
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true

//@ ensures p;
T m() {

... return e; ...
}

=⇒

//@ ensures p;
T m() {

...
result = e;
//@ assert p;
goto m_end;
...
m_end:
return result;

}

Rewrite rule 7: return to goto

7.2.3 break, return to throw
If finally is used, break and return are encoded as throw. This is achieved
through the following steps:

Encode return as throw The method body must be wrapped in a try-catch
block such that a “return exception” can be thrown to emulate control flow from
return. Each return is replaced by a throw throwing the return exception. The
type of this return exception depends on the name of the method. Additionally,
if the method returns a value, this value is inserted in the exception through the
constructor. See Rewrite rule 8.

true

T m() {
... return v; ...

} =⇒

T m() {
try {

...
throw new Ret_m(v);
...

} catch (Ret_m e) {
return e.value;

}
}

Rewrite rule 8: return to throw

Encode break as throw Any labeled statement that contains a break must be
wrapped in a try-catch. Each break is then replaced by a throw. The type
thrown and caught is named after the label of the labeled statement. See Rewrite
rule 9.
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true

l: if (p) {
... break l; ...

} =⇒

try {
if (p) {

...
throw new Ex_l();
...

}
} catch (Ex_l e) { }

Rewrite rule 9: Rewrite break to throw. This rewrite rule can be generalized to
other compound labeled statements such as while and switch.

7.2.4 Exceptional control flow to goto
At this point, break and return are encoded in goto or throw. This means the
control flow in the AST strictly consists of goto or exceptional related control
flow. The following steps encode exceptional control flow into goto.

Encode try, catch, finally Each catch clause gets an entry label so it can
be targeted by gotos. Furthermore, at entry of the catch clause the exc variable
is inspected. If it does not have the same type as the catch clause, execution must
continue at the next handler. Otherwise, the catch clause is executed. At the end
of the catch clause as well as the end of the try block, a jump must be added that
jumps to after the try-catch block or to finally. To finally an entry label is
added.

At the end of each finally, the decision must be made to continue traversing
upwards to the next handler (a catch, finally, or end of method), or to exit the
try and resume regular control flow. This is done by querying the exc variable.
If it is null, normal control flow has to be resumed. If it is not null, control flow
should continue at the next handler.

See Rewrite rule 10.
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true

try {
...

} catch (E e) {
...

} finally {
...

}

=⇒

try {
...
goto finally_n;

} catch (E e) {
catch_E:
if (!(exc instanceof E)) {

goto finally_n;
}
e = exc; exc = null;
...
goto finally_n;

} finally {
finally_n:
...
if (exc == null) {

goto after_try;
} else {

goto next_handler;
}

}
after_try:

Rewrite rule 10: Encode catch, finally and try in goto.

Encode throw Each throw is replaced by an assignment into an “exception
variable” named exc, and a jump to the next handler. This handler can either be
a catch clause, a finally clause or the end of the method if there is no handler.
In the case that an exception can exit the method (i.e. there is no handler), the
exception variable must be added as an out parameter, such that it is returned to
the caller. Otherwise it can be a local variable. See Rewrite rule 11.

true

... throw e; ...
=⇒

...
exc = e;
goto next_handler;
...

Rewrite rule 11: Encode throw as goto. next_handler can either be a label to a
catch block or the end of the method.

Encode throwing method calls After each throwing method call the excep-
tional return value should be checked. If the exceptional return value is non-null,
the code should jump to the next handler or end of method. See Rewrite rule 12.
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true

... x = o.m(exc); ...
=⇒

...
x = o.m(exc);
if (exc != null) {

goto next_handler;
}
...

Rewrite rule 12: Encode a throwing method call as goto. The exc out parameter
is already present. This was added in the step “Encode throw”.

Inline try-catch-finally All try-catch-finally components can now also
be inlined, since all the control flow is encoded in goto. See Rewrite rule 13.

true
try {

...
} catch (E e) {

...
} finally {

...
}

=⇒

...

...

...

Rewrite rule 13: Inline try-catch-finally.

7.2.5 Encoding signals
At this point all control flow is encoded in gotos. The only task remaining is
to encode signals clauses into regular contracts that reason over the added exc
output parameter.

Add constraining signals A signals clause must be added that constrains
the dynamic type of exc. This is to convey the knowledge that if exc is not null,
the type is constrained by the signals clauses of the method. The possible types
are derived from all the signals clauses. See Rewrite rule 14.
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true

//@ signals (E1 e) b1;
...
//@ signals (En e) bn;
void m();

=⇒

//@ signals (E1 e) b1;
...
//@ signals (En e) bn;
/*@ signals (Throwable t)

t instanceof E1
|| ...
|| t instanceof En;

@*/
void m();

Rewrite rule 14: Add a signals clause that constrains the type of the thrown
exception.

Encode signals as ensures Each signals clause only applies when an ex-
ception is thrown and the dynamic type of the exception matches the type of
the signals clause. Each ensures clause only applies if no exception is thrown.
These two clauses that sometimes apply can be encoded in ensures clauses that
always apply by making them conditional on the thrown exception. This way, the
semantics of signals and ensures in a language with exceptions can be encoded
in ensures in a language without exceptions. See Rewrite rule 15.

true

//@ ensures b1
//@ signals (E1 e) b2;
void m(); =⇒

/*@ ensures
exc == null ==> b1; @*/

/*@ ensures
(exc != null

&& exc instanceof E1)
==> b2; @*/

void m();

Rewrite rule 15: Convert signals to ensures.

7.3 Correctness
This work does not contain a formal proof of soundness of the suggested trans-
formations. However, three arguments can be made for correctness of the overall
approach.

First, the compilation of abrupt termination primitives into exceptions is straight-
forward. They are conceptually easy to explain, and the implementation is also
short and straightforward.
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Second, because of this first compilation step, compilation of exceptions can
be stated in terms of throw, catch and finally. This simplifies the process in
general as there are less edge cases, which means it is less likely that bugs are
introduced. This has the added benefit that the transformation of finally into
goto can be stated in terms of the next finally and the current try-catch block,
instead of having to enumerate all loops that wrap this finally block and their
labels.

Third, each of the transformation steps is modular in the sense that they
perform a simple task: compile continue into break, abrupt termination into
exceptions, and exceptions into goto, and so on. This aids debugging: correct
functioning of each transformation can be checked independently of the others,
and writing targeted tests is easier.

7.4 Implementation
This section discusses the implementation of the transformation described in this
chapter, and the difference compared to the transformation described in this chap-
ter. The source of the prototype is located on GitHub [59].

The prototype implementation does not completely implement the transforma-
tion described in this chapter. Particularly, type checking Java exceptions is not
yet included. However, the core of the idea, an ergonomic approach to provide
support for abrupt termination, has been implemented.

The passes added to the repository in [59] are:

• specify-implicit-labels: Specifies implicit labels, as discussed in Section 7.2.1.

• continue-to-break: Encodes continue as break, as discussed in Section 7.2.1.

• break-return-to-goto: Encodes abrupt termination in goto, as discussed
in Section 7.2.2.

• break-return-to-exceptions: Encodes abrupt termination in exceptions,
as discussed in Section 7.2.3.

• intro-exc-var: This transformation is responsible for managing the exc
var. This includes possibly adding it as an out parameter, and setting the
catch variables to the value of exc.

• encode-try-throw-signals: This is the biggest transformation of the five
at 413 lines of code, including comments. It takes some time to read, but
the logic is straightforward: each throw is turned into a jump to the next
handler. If a catch does not handle an exception, it jumps to the next
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handler. At the end of a finally, a jump is emitted that jumps to the
next handler if exc != null, which means an exception is being thrown.
The next handler is kept track of using push/pop operations as the AST is
traversed in a depth first approach.

7.4.1 Differences with theory
There is a difference between the approach described in this work and the imple-
mentation. In this work, it is recommended to first encode exceptional control flow
into goto, and then encode signals in ensures. In the implementation, there is
a separate pass for introducing the exc variable, after which a pass is executed
that encodes exceptional control flow and signals in one go. We did this because
the exceptional control flow pass is easier to implement if it can be assumed that
the exc var already exists. Then, encoding signals into ensures only took 60
more lines of code, so we decided not to put it into a separate pass.

7.5 Evaluation
This section evaluates if the approach correctly encodes Java semantics. This is
done by inspecting the intermediate stages of verification of two examples. While
not as rigid as a formal proof, it gives an intuition for correctness of the approach.

The two examples are both from the KeY example set: the KeY abrupt ter-
mination challenge example, and an example that shows the interplay between
exceptions and abrupt termination [1].

The intermediate stages are acquired by verifying the programs with VerCors,
and supplying several flags such as --show-after passname, where passname
is equal to one of the passes named in Section 7.4. Given the --show-after,
VerCors will output the AST after the given pass has been applied. This is useful
for inspecting changes to the AST over time as the verification process progresses.

As the aim of these examples is to highlight points from the proposed trans-
formation, the examples are simplified versions of VerCors output. Specifically,
extensively flattened expressions have been recombined, and most contracts and
assertions have been removed. However, in the implementation in VerCors, the
actual AST has more statements, and annotations and contracts are retained or
refined between passes.

7.5.1 Abrupt termination
The following example can be found in our fork of the VerCors repository [61]. We
focus on the following for loop, as it contains the break statement:

69



1 for (int i = 0 ; i < ia.length; i++) {
2 if (ia[i] < 0) {
3 ia[i] = -ia[i];
4 break;
5 }
6 }

The for loop iterates over all indices. When a negative element is encoun-
tered, the value is flipped, and the for loop is abruptly terminated. First, the
standardizing pass is done:

1 __loop_0: for(int i = 0; i < ia.length; i++) {
2 if (ia[i] < 0) {
3 ia[i] = -ia[i];
4 break __loop_0;
5 }
6 }

In this case, this pass makes the implicit labels explicit. Then, the pass of
encoding break to throw is done:

1 __loop_0: try{
2 for(int i=0;i < ia.length;i ++) {
3 if (ia [ i ] < 0) {
4 ia [ i ] = - ia [ i ];
5 throw new __break___loop_0_ex <>();
6 }
7 }
8 } catch (__break___loop_0_ex __ucv_0) { }

Normally the goto encoding would be used, as there is no finally in this
program. However, for illustrative purposes, we have forced usage of the throw en-
coding with the --at-via-exceptions flag. The break is replaced with a throw,
and the for loop is wrapped in a try-catch statement.

Finally, exceptional control flow is encoded in goto:
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1 {
2 int i;
3 i=0;
4 while(i < \length(getOption(this.field_AbruptTermination_ia))) {
5 if (getOption(this.field_AbruptTermination_ia)[i] < 0) {
6 getOption(this.field_AbruptTermination_ia)[i].item
7 = -getOption(this.field_AbruptTermination_ia)[i].item;
8 sys__exc = __break___loop_0_ex <>.

constructor___break___loop_0_ex(current_thread_id ,globals);
9 goto catch___break___loop_0_ex_2;

10 }
11 i=i + 1;
12 }
13 goto try_end_3;
14 }
15 {
16 label catch___break___loop_0_ex_2;
17 if (!TYPE<>.instanceof(\typeof(sys__exc), TYPE<>.

class___break___loop_0_ex())) {
18 goto method_end_internal_AbruptTermination_negatefirst_1;
19 }
20 __break___loop_0_ex <> __ucv_0;
21 assume __ucv_0 == sys__exc;
22 sys__exc=null;
23 goto try_end_3;
24 }
25 label try_end_3;

In this code snippet, the try-catch statement has been inlined, and been
encoded completely in goto statements and labels.

Note that between this code snippet and the previous, the program grew. This
is because between this pass and the previous pass, other passes have been applied
as well, such as encoding references into Options or translating for loops into
corresponding while loops.

7.5.2 Exception & abrupt termination interplay
This example shows the interplay between exceptions and abrupt termination.
The following example can be found in our fork of VerCors [58]. In the code, a
value is returned in a catch clause, which is subsequently overwritten by a return
in the finally clause:
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1 //@ ensures \result == 2;
2 public int bar() {
3 // IllegalArgumentException is a subclass of RuntimeException
4 IllegalArgumentException e = new IllegalArgumentException();
5 int i = 0;
6 try {
7 throw e;
8 } catch (RuntimeException e1) {
9 i = 10;

10 return 1;
11 } finally {
12 //@ assert i == 10; // Went through the RunTimeException first
13 return 2;
14 }
15 }

First, the pre-processing phase is done. It does not make any significant
changes, and hence we skip its output. Then the return to throw transformation
is done, because the code contains finally:

1 //@ ensures \result == 2;
2 int bar(){
3 try {
4 IllegalArgumentException <> e = new IllegalArgumentException <>();
5 int i=0;
6 try {
7 throw e;
8 } catch (RuntimeException <> e1) {
9 i = 10;

10 throw new __return_bar_ex <>(1);
11 } finally {
12 assert i == 10;
13 throw new __return_bar_ex <>(2);
14 }
15 } catch (__return_bar_ex <> __ucv_2) {
16 return __ucv_2.value;
17 }
18 }

A try-catch wraps the method body, and each return is replaced by a throw
throwing the returned value wrapped in an exception. Then the exceptional control
flow is encoded in goto:
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1 //@ ensures \result == 2;
2 int bar(){
3 java_DOT_lang_DOT_Object <> sys__exc=null;
4 java_DOT_lang_DOT_IllegalArgumentException <> e =

java_DOT_lang_DOT_IllegalArgumentException <>.
constructor_java_DOT_lang_DOT_IllegalArgumentException();

5 int i = 0;
6 {
7 sys__exc=e;
8 goto catch_java_DOT_lang_DOT_RuntimeException_13;
9 goto finally_14;

10 }
11 {
12 label catch_java_DOT_lang_DOT_RuntimeException_13;
13 if (!TYPE<>.instanceof(\typeof(sys__exc), TYPE<>.

class_java_DOT_lang_DOT_RuntimeException())) goto finally_14
;

14 java_DOT_lang_DOT_RuntimeException <> e1;
15 assume e1 == sys__exc;
16 sys__exc = null;
17 i = 10;
18 sys_exc = __return_bar_ex <>.constructor___return_bar_ex(1);
19 goto finally_14;
20 }
21 {
22 label finally_14;
23 assert i == 10;
24 sys__exc = __return_bar_ex <>.constructor___return_bar_ex(2);
25 goto catch___return_bar_ex_10;
26 if (sys__exc != null) goto catch___return_bar_ex_10;
27 goto try_end_15;
28 }
29 label try_end_15;
30 goto try_end_11;
31 {
32 label catch___return_bar_ex_10;
33 if (!TYPE<>.instanceof(\typeof(sys__exc), TYPE<>.

class___return_bar_ex())) goto method_end_bar;
34 __return_bar_ex <> __ucv_2;
35 assume __ucv_2 == sys__exc;
36 sys__exc=null;
37 return __ucv_2.field___return_bar_ex_value;
38 goto try_end_11;
39 }
40 label try_end_11;
41 label method_end_bar;
42 }
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This increases the code size considerably, but the control flow is still sequential
and straightforward. To make the control flow easier to follow, we have explicitly
highlighted it in the code. Note how the contract ensures \result == 2; is
satisfied because the exc variable is overwritten with a new return value on line 24.
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Chapter 8

Inheritance

This chapter discusses design considerations supporting for Java 7 inheritance, as
well as the implementation in VerCors. We first motivate why additional modifi-
cations to APFs are needed for verification of Java inheritance in practice. Then
three possible approaches and their characteristics are discussed. Based on these
three approaches, we present an approach for VerCors. We briefly discuss four
informal semantics rules of the suggested approach, and then present our trans-
formation. Finally, we evaluate the implementation by manually applying the
approach to an example, and discussing the intermediate steps.

8.1 Design considerations
This section discusses the design considerations for the VerCors approach. We
outline the main problem of using APFs for inheritance and discuss the trade-offs
of the different approaches.

8.1.1 The APF exchange problem
As discussed in Section 4.2.4, APFs allow verification of behavioural subtyping,
but they cannot be applied directly to Java.

The general usage of an APF consists of two steps: a predicate family instance
is exchanged for a predicate family entry. This entry is then unfolded like a regular
abstract predicate. However, exchanging a predicate family instance for a predicate
family entry can only take place if the dynamic type is known. Hence, crucial for
using an APF is knowing the dynamic type of the receiver: if the dynamic type is
not known, the predicate family instance cannot be used. Furthermore, if merely a
subtype relation is known, the predicate family instance also cannot be exchanged
for an entry, as the exact type is needed.
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In Java, dynamic dispatch ensures that a method call is dispatched to the dy-
namic type of the object. This suggests that at the start of a method the dynamic
type of this is known. However, this is not the case: Java allows subclasses to
call methods and constructors of superclasses through super. Therefore, the only
fact known at the beginning of the method is the subtype relation. A method is
either executed because of dynamic dispatch, or because a subclass called it using
super, implying this instanceof CurrentClass.

The fact that the dynamic type is needed to use an APF, combined with the
fact that the exact dynamic type of an object can only be acquired by testing for
it, makes APFs as presented in Section 4.2.4 difficult to use in Java. We refer to
this problem as the APF exchange problem. To the best of our knowledge, we
have not seen other works state this problem explicitly.

There are two ways to resolve the APF exchange problem. The first option is
to limit Java semantics and disallow super calls. The second is to extend or adjust
the details of how APFs work. Since verification of commercial Java programs is
the goal, the second option is explored in this work.

8.1.2 Characteristics of approaches
Adjusting how APFs work is not straightforward: each change has different trade-
offs We have found four characteristics that are affected by different APF ap-
proaches: modularity, automatic inheritance of methods, side-calling, and mod-
elling power.

Apart from modularity, each of the characteristics is related to a certain code
pattern. Listing 8.1 illustrates how these characteristics can appear concretely
in Java programs and specifications. These examples of code patterns are also
commented on in this section.
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Listing 8.1: Example of automatic inheritance, side-calling and modeling through
APF parameters.

1 class Cell {
2 int value;
3
4 // Read only method: should be inherited automatically
5 int get() {
6 int res = newVal;
7 return res;
8 }
9

10 // Side-call: reuse implementation of sibling method
11 int setFrom(Cell otherCell) {
12 set(otherCell.get());
13 }
14
15 //@ resource state(int x) = Perm(value, 1) ** value == x;
16
17 // Modeling: model currently held value through APF parameter
18 //@ requires state(oldVal);
19 //@ ensures state(newVal)
20 void set(int newVal) {
21 //@ unfold state(oldVal);
22 this.value = newVal;
23 //@ fold state(newVal);
24 }
25 }

Modularity

Modularity indicates whether or not the approach is modular. In the context of
inheritance, if an approach is not modular, defining a subclass could cause a parent
class to no longer verify, even if it was previously verified as correct. In other words,
it means that adding a subclass triggers reverification of the superclass.

Automatic inheritance of methods

Automatic inheritance of methods means that the approach allows inheriting im-
plementations when it is safe to do so, and disallows this if it is not safe to do
so. If the approach does not support this, it requires a proof from the user (in the
worst case, in the form of extra code) that inheriting the implementation is safe.

An example of this is line 5 in Listing 8.1: the get method only reads the
program state, and should be inherited automatically without any interaction or
extra proofs from the user if it is safe to do so.
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Side-calling

Side-calling is when a method calls any of the methods defined in the same class
through dynamic dispatch. This is done often in Java code to keep methods small,
and reuse code throughout a class.

An example is presented on line 11 in Listing 8.1: the setFrom method dele-
gates setting the value to set.

Modelling power

Modelling power refers to using APF parameters for modelling the state of an
object in an abstract manner. If an APF approach restricts usage of the object
when APF parameters are used for modelling state, then the approach does not
have full modelling power.

An example of using APF parameters to model object state is shown in Listing 8.1
on lines 15 and 18, where the parameters of the state predicate models the value
currently held by the Cell class. Using the parameter, the contract can specify
that a value is set, without specifying how exactly the value is stored internally.

8.1.3 Candidate approaches
From literature and the state-of-the-art tool review we have collected three ap-
proaches to make the APF problem manageable. These are the “extension” ap-
proach, the “static/dynamic” approach and the “non-modular” approach. Each is
discussed next. We have summarised the influence of these three approaches on
the four earlier discussed characteristics in Table 8.1.

Approach Modular Inherit Side-calling Modelling Used by
Extension Yes Automatically Yes Limited Hurlin [36]
Static/dynamic Yes Proof needed No Full Verifast [65]
Non-modular No Automatically Yes Full Nagini [23]

Table 8.1: This table summarises the three discussed approaches and their charac-
teristics. The “Inherit” column specifies whether or not method implementations
can be inherited without user interaction. The “Used by” column indicates exam-
ples of the approaches in practice. Note that Verifast and Nagini are also discussed
in both Chapters 6 and 9.

Extension

The extension approach was first suggested by Parkinson in Local reasoning for
Java [54], and later actually used and formalized by Haack and Hurlin in ‘Separation
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Logic Contracts for a Java-Like Language with Fork/Join’ [26], as well as ‘Specification
and Verification of Multithreaded Object-Oriented Programs with Separation Logic’ [36].

It solves the APF exchange problem by restricting the definition of APFs:
when an APF is defined, it automatically extends the parent APF. This means
that unfolding an APF entry results in the body of the APF, and additionally an
APF entry of the parent type.

A practical example of this is shown in Listing 8.2 on lines 23 to 28. Here,
the dynamic type of rc is known, and we assume the constructor returns an APF
instance. Therefore, the APF instance can be unfolded. The instance is unfolded
into the entry, and then the entry is unfolded as well. This yields a write permission
for the field bak, as well as another predicate entry state@Cell, the superclass of
ReCell.

Including the APF entry of the superclass by default fixes the APF exchange
problem, because it ensures it is always possible to “extract” a predicate entry
from a predicate instance. Formally, the hypothetical extract statement allows
extracting 1) the entry of a given type and 2) a magic wand from an APF instance.
The magic wand can be applied to regain the APF instance. The Hoare rule for
extract is as follows:

o instanceof C
ExtractAPF

{ o.p(ē) }
extract o.p@C(ē)

{ o.p@C(ē) ∗ (o.p@C(ē) −∗ o.p(ē)) }

The rule states that to extract the predicate entry o.p@C(ē) from o.p(ē), it
must be proven that o instanceof C. Given that the static type of o always gives
a lower bound for C, the extract statement is always usable. The validity of
the extract statement relies on the (Dynamic type) and (ispartof Monotonic)
axioms from [36].

In short, this approach allows to use an APF, even when only the subtype of
the dynamic type is known.

This approach has the drawback that the modelling power is limited. Specifically,
when parameters are used in this approach, object state becomes read only. This
is shown practically in the set method in Listing 8.2. On line 9, a magic wand is
received from the extract statement for the value _. However, on line 11, the vari-
able that controls this parameter is set to newValue. Therefore, to apply the magic
wand, a magic wand with a parameter equal to newValue is needed, as shown in
line 14. However, the only wand available has a parameter equal to _, which is
not equal to newValue, and hence cannot be applied. This example shows that
changing the state after acquiring a magic wand through extract might render
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Listing 8.2: Example of automatic inheritance, side-calling and modeling through
APF parameters.

1 class Cell {
2 //@ resource state(int x) = Perm(value, 1\1) ** value = x;
3 int value;
4
5 //@ requires state(_);
6 //@ ensures state(newValue);
7 void set(int newValue) {
8 //@ extract state@Cell(_);
9 //@ assert state@Cell(_) ** (state@Cell(_) -* state(_))

10 //@ unfold state@Cell(_);
11 value = newValue;
12 //@ fold state@Cell(newValue);
13 // Does not match the magic wand: apply fails
14 //@ apply state@Cell(newValue) -* state(newValue);
15 }
16 }
17
18 class ReCell extends Cell {
19 //@ resource state(int x) = Perm(bak, 1\1) ** bak = x;
20 int bak;
21 }
22
23 // APF contains parent APF:
24 ReCell rc = new ReCell();
25 //@ assert rc.state() ** rc.getClass() == ReCell.class;
26 //@ unfold rc.state();
27 //@ unfold rc.state@ReCell();
28 //@ assert Perm(rc.bak, 1\1) ** rc.state@Cell()
29
30 // APF can be taken apart ("extracted"):
31 ReCell rc = new ReCell();
32 //@ assert rc.state() ** rc.getClass() == ReCell.class;
33 //@ extract rc.state@Cell();
34 //@ assert rc.state@Cell() ** (rc.state@Cell() -* rc.state());
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the wand unusable.
We believe this is an important drawback, but it has not yet been reported

as such. We think this is the case because, in ‘Specification and Verification of
Multithreaded Object-Oriented Programs with Separation Logic’, APF param-
eters were used for permission amounts [36]. Since permission amounts rarely
change, limited modelling power was not a practical problem. However, it might
be problematic for other applications of this technique where parameters are used
for other purposes.

Static/dynamic

The static/dynamic approach was introduced by Parkinson and Bierman in ‘Separation
Logic, Abstraction and Inheritance’ [55] and further refined in ‘Separation Logic
for Object-Oriented Programming’ [53].

The static/dynamic approach defines two kinds of contracts: a dynamic con-
tract, which is used when a method is dynamically dispatched, and a static con-
tract, which is used when a method is called through super (i.e. statically dis-
patched).

The contracts have different uses. When a new method is defined there are
two proof obligations:

1. The dynamic contract must imply the static contract, given the dynamic
type is known.

2. The implementation adheres to the static contract.

These two facts assure that a method satisfies its contracts both during dy-
namic and static dispatch. An example of a newly defined method is shown in
Listing 8.3 on line 6. We will give a short proof of its correctness. Given that
the dynamic type is equal to Cell, the dynamic contract implies the static con-
tract, as state() can be unfolded into state@Cell(), and back into a state()
after the method. The implementation adheres to the static contract, as it folds
a state@Cell at the end.

It often happens that the dynamic and static contract are similar. This is the
case in Listing 8.3. This similarity can be abbreviated by only specifying the dy-
namic contract. The static contract is then derived by replacing every occurrence
of a predicate family instance with a predicate family entry. In Listing 8.3, the
explicit form on line 6 is identical to the implicit form on line 19.

If a method is overriding another, the same proof obligations hold. Additionally,
it must be proven that the overriding dynamic contract implies the overridden con-
tract. Specifically, the super-pre-condition must imply the sub-pre-condition. The
sub-post-condition must imply the super-post-condition. This is to ensure that
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Listing 8.3: Example showing a newly defined method set for the Cell class.
1 class Cell {
2 //@ resource state(int x) = Perm(value, 1\1) ** value == x;
3 int value;
4
5 // Explicit form
6 //@ dynamic:
7 //@ requires state(_);
8 //@ ensures state(newValue);
9 //@ static:

10 //@ requires state@Cell(_);
11 //@ ensures state@Cell(newValue);
12 void set(int newValue) {
13 //@ unfold state@Cell(_);
14 value = newValue;
15 //@ fold state@Cell(newValue);
16 }
17
18 // Implicit form
19 //@ requires state(_);
20 //@ ensures state(newValue);
21 void set(int newValue);
22
23 // Demonstrate impossible side-call
24 //@ requires state(_);
25 //@ ensures state(val * 2);
26 void setDouble(int val) {
27 // set is a dynamic dispatch call, hence requires dynamic

contract
28 // Dynamic contract requires state(_)
29 // But have state@Cell(_) because of static contract
30 // Hence, side-calling is impossible
31 set(val * 2);
32 }
33 }
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Listing 8.4: Example showing a method overriding set
1 class ReCell extends Cell {
2 /*@ resource state(int x, int y) = Perm(bak, 1\1) ** bak == y
3 ** state@Cell(x); @*/
4 int bak;
5
6 //@ requires state(oldValue , _);
7 //@ ensures state(newValue , oldValue);
8 void set(int newValue) {
9 //@ unfold state@ReCell(oldValue , _);

10 bak = value;
11 super.set(newValue);
12 //@ fold state@ReCell(newValue , oldValue);
13 }
14 }

the Liskov Substitution Principle holds and the sub-method can be used in place
of the super-method.

An example of an overriding method is shown in Listing 8.4. In this case, since
the dynamic contract is identical to that of the superclass, the super-pre-condition
trivially implies the sub-pre-condition. Conversely, the sub-post-condition trivially
implies the super-post-condition.

To summarize, this method tries to resolve the APF exchange problem by
always exchanging the APF instance for an APF entry when a method is dynam-
ically dispatched. This is possible because dynamic dispatch guarantees that the
dynamic type is known.

This has one important benefit: it allows super-methods to change the state
present in the APF. The static/dynamic contract hierarchy then ensures all pred-
icate entries are packaged back up into a predicate instance again.

However, there are three drawbacks. First, it is a complicated approach, both
to explain and use.

Second, side-calling is not possible. If the set method from Listing 8.3 needs
to call get, this is not possible because this would require a predicate instance,
while the method implementation of set only has access to a predicate entry. This
is demonstrated in the method setDouble starting on line 23 in Listing 8.3. The
method setDouble can never call set, as it cannot satisfy the dynamic contract
of set. This shortcoming was first mentioned in [55, Section 5.5], however in our
opinion it was addressed too briefly. It is possible to call parent methods through
super, as these require the static contract, but this is still limiting.

Third, all methods must be overridden. This is because the method might
return an abstract predicate family where one of the arguments changed. If so,

83



Listing 8.5: Example showing what happens when a non-modular APF is unfolded.
==> is the implies operator.

1 class C {
2 //@ resource p() = body_C;
3 }
4 class D extends C {
5 //@ resource p() = body_D;
6 }
7
8 C c = ...; // Acquire instance of C or D
9 //@ unfold c.p();

10 //@ assert c instanceof C ==> body_C && c instanceof D ==> body_D;

the sub-method must then prove that it is safe to wrap this entry into its own
entry, which might involve proof steps and variable assignments. For a detailed
example we refer the reader to Appendix E.

Non-modular

The non-modular approach is used by the Nagini verifier [23]. While it is used in
practice, to the best of our knowledge the details of this approach have not been
discussed in any work.

The non-modular approach changes APFs not to have entries, but only in-
stances. These instances can always be unfolded, regardless of the dynamic type
of the receiver. When such a non-modular predicate instance is unfolded, it yields
the bodies of all classes that define that predicate in the inheritance hierarchy.
However, each of these bodies is only included if the current dynamic type is a
subtype of the type where that APF is defined. In other words, the body of the
instance is dependant on the exact type of the object. If the type is C, only the
APF of C is included, if it is D, the APFs of both C and D are included, and so
on. Listing 8.5 gives an intuition of what a non-modular APF unfolds to.

There are two benefits to this approach. First, it is straightforward to explain.
Second, it allows automatic inheritance of methods. This is because APF bodies
of subclasses are included during verification of methods of superclasses. Hence,
if a super-method verifies as correct, it can also be used by subclasses.

However, this second benefit is also the drawback: adding a subclass may
cause a superclass to no longer verify. In other words, adding a subclass triggers
reverification of a superclass with a new APF, which is not modular.
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8.2 Chosen approach
This section motivates and describes our suggested approach for supporting in-
heritance in VerCors. First, we give an overview of the suggested approach, and
discuss the main motivations. Then we show and discuss the syntax needed to
verify programs with inheritance in VerCors. Then we list the semantic checks
that need to be implemented in VerCors to soundly support the suggested ap-
proach. Finally, we discuss two proof rules of the informal semantics of the chosen
approach included in Appendix D.

8.2.1 Overview & motivation
For VerCors, we recommend to combine the static/dynamic and extension ap-
proach. There are two motivations for this recommendation.

First, one of the aims of VerCors is proving functional correctness of concurrent
programs. Therefore it is useful to be able to use APF parameters fully, while still
being able to mutate the state of objects. The static/dynamic approach allows this
while retaining modularity. An example of this is given in Listing 8.6. Because
of the static/dynamic approach, the parameters of state can be used to model
the internal state of Cell and ReCell, without leaking implementation details.
Additionally, the state can be updated without problem.
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Listing 8.6: Example showing practical usage of side calling and modelling through
APF parameters.

1 class Cell {
2 int val;
3 //@ resource state(int x) = Perm(val, 1\1) ** val == x;
4
5 //@ requires state(_);
6 //@ ensures state(newVal);
7 void set(int newVal);
8
9 //@ requires state(currentVal);

10 //@ ensures state(currentVal) ** \result == currentVal;
11 int get();
12 }
13
14 class ReCell extends Cell {
15 int bak;
16 //@ resource state(int x, int y) = Perm(bak, 1\1) ** bak == y;
17
18 //@ requires state(oldVal, _);
19 //@ ensures state(newVal, oldVal);
20 void set(int newVal) {
21 //@ unfold state@ReCell(oldVal, _);
22 bak = super.get(); // Static contracts are used here
23 super.set(newVal);
24 //@ fold state@ReCell(newVal, oldVal);
25 }
26 }

Second, the extension approach provides several nice benefits, while not limit-
ing the patterns described in ‘Separation Logic for Object-Oriented Programming’ [53].
It guarantees side-calling read-only parent methods through super, as it ensures
a predicate entry is always extractable from a predicate instance. An example can
be seen in Listing 8.6, where on line 22 get is called throught the parent class
Cell. Because of the extension approach, state@ReCell includes state@Cell,
which allows super.get and super.set to be called. The extension approach
also integrates well with lock invariants in VerCors. Lock invariants are imple-
mented as abstract predicates with zero arguments, and are therefore well suited
for use with the hypothetical extract statement, as mentioned in Section 8.1.3.

An example of this is shown in Listing 8.7. Even though the precise dy-
namic type of c is unknown, the extension approach allows us to unpack the
lock_invariant without knowing the precise dynamic type through the extract
statement. Normally, after changing state, putting back together the lock_invariant
would be problematic. However, since the lock_invariant does not have any pa-
rameters, we can still apply the magic wand to regain the lock_invariant APF.
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Listing 8.7: Usage of extract for manipulation of lock_invariant.
1 class Cell {
2 int val;
3 //@ resource lock_invariant() = Perm(val, 1\1);
4 }
5
6 void doWork(Cell c) {
7 synchronized (c) {
8 //@ assert c.lock_invariant();
9 //@ extract c.lock_invariant@Cell();

10 //@ unfold c.lock_invariant@Cell();
11 c.val = c.val + 2;
12 //@ fold c.lock_invariant@Cell();
13 //@ apply c.lock_invariant@Cell() -* c.lock_invariant();
14 //@ assert c.lock_invariant();
15 }
16 }

The drawback of the suggested approach is identical to that of static/dynamic
contracts: automatic inheritance of methods is difficult, and side-calling is not
possible. This might be problematic, but more experience with this approach is
needed to know this for sure.

8.2.2 New syntax
Several syntactical elements are needed to support usage of the suggested ap-
proach. Note that, except for the changes mentioned in the last paragraph about
Java syntax elements, all proposed statements and syntaxes are intended for spec-
ification. They are used in either ghost code or method contracts, and do not
influence the runtime behaviour of the program.

APF entries

//@ assert c.state@Cell(x);
//@ assert n.colored@RedNode(y);

For expressing assertions about APF entries, the @ syntax is needed. This allows
to qualify an APF with a certain type by adding an @ followed by the class name
after the APF name.
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Exchanging instances for entries

//@ unfold c.state(x) at Cell;
//@ assert c.state@Cell(x);
//@ fold c.state(x) at Cell;

A statement is needed that allows exchanging APF instances for APF entries when
the dynamic type is precisely known. We propose extending the fold statement
to allow specifying a class, in the form of unfold o.state() at C. This indicates
that o.state() should be exchanged for o.state@C(). Conversely, this syntax
should also be added for fold, to allow exchanging an APF entry with an APF
instance as well. Using fold and unfold without at should remain possible to
fold and unfold plain APs.

Hypothetical extract statement

//@ assert c.state(x) ** c instanceof Cell;
//@ extract c.state@Cell(x);
//@ assert c.state@Cell(x) ** (c.state@Cell(x) -* c.state(x));

Syntax for the hypothetical extract statement, as discussed in Section 8.1.3, needs
to be added. We have also considered to add a merge statement to reverse the
effect of the extract statement. However, as the effect is also exactly modelled
by a magic wand, we have decided not to do this. This is a practical decision: if
readability ever becomes a problem, such a shorthand can easily be added.

Changing APF instance arity

//@ assert c.state(x);
//@ narrow c.state(x);
//@ assert c.state();
//@ given (int y) widen c.state();
//@ assert c.state(y);

To allow for changing arity of APF instances, two statements need to be added:
a statement to add a fresh parameter, and another to remove the last parameter.
We suggest to implement this via the widen and narrow statements. The widen
statement allows to add a parameter to the end of the parameter list of an APF
instance. Its syntax is as follows: given (T x) widen o.p(), which removes
o.p() from the current state and adds o.p(x), where x is type T. The narrow
statement removes the last parameter, and only requires the APF instance to be
named: narrow o.p(x) removes o.p(x) from the state and adds o.p().
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Contract implication proofs

//@ requires P;
//@ ensures Q;
/*@ with {

// proof steps to prove:
// super pre-condition implies sub pre-condition

} @*/
/*@ then {

// proof steps to prove:
// sub post-condition implies super post-condition

} @*/
void doWork(Cell c) { ... }

In some situations proving that a sub-method contract is compatible with the
super-method contract is complex. For example, an APF instance might need to
be widened with several parameters. At the time of writing this cannot be done
automatically. Therefore, separate syntax is needed to include these proof steps
for a the method definition. We propose to reuse the with-then syntax from
VerCors at the method level. with-then is already used in VerCors for including
proof steps for method calls, and therefore is a logical candidate for proof steps
for a method as well. with-then should only be allowed for overriding methods.

(Alternative syntax)

/*@ implication_proof void doWork(Cell c) {
// proof steps to prove:
// super pre-condition implies sub pre-condition
sub.doWork(c);
// proof steps to prove:
// sub post-condition implies super post-condition

} @*/

Including the proof steps with the contract of a method definition is a practical
decision. Another possibility would be to have the proof as a separate ghost
method with a specific prefix or naming. This is the alternative syntax shown
above. The method contains several proof steps, then a call to the child method,
and then several more proof steps. This mirrors the with-then structure, but is
a separate syntactical entity from the contract. This might be a useful syntax if
implication proofs become long.

Java syntax elements

The Java syntax elements related to inheritance should be supported. This means
extends, instanceof, super and casting syntax should be added. These are
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already supported by the Java parser of VerCors, but additional AST changes
might be needed to properly process them.

8.2.3 Semantics to implement in VerCors
Several semantical checks and features need to be implemented in VerCors to fully
support the suggested approach and Java inheritance in general. In this section
we discuss which checks and semantics are needed, and why.

These semantical checks were determined by inspection of The Java language
specification [41]. While there might be aspects we have missed, we believe that
the checks listed in this section are sufficient for basic support.

Type information

As the Java type system is more complex than the Silver type system, type infor-
mation will have to be encoded explicitly. Care will have to be taken to ensure
type information about arguments, return values, and fields is propagated properly
and without user interaction.

Furthermore, Java also enforces type safety by doing runtime type checks. One
example of this is unsafe casting, as presented in Listing 8.8. In the example, the
type system guarantees p instanceof Parent. However, although Child extends
Parent, not every Parent is a Child. Therefore, casting a Parent to a Child is
an unsafe operation that might fail, unless it is first proven that p.getClass()
== Child.class. The encoding of type information in COL will have to ensure
these checks are done as well. The same goes for emitting proof obligations for
preventing ArrayStoreException.

Listing 8.8: Example of unsafe casting. It is assumed that Child extends Parent.
1 Parent p = ...;
2 Child c = (Child) p; // Unsafe: might throw

Distinguish shadowed variables

As described in The Java language specification [41], Java allows fields to be shad-
owed. This means that a subclass can reuse the name of a field of the superclass,
which hides the previous field for the subclass. An example of this is given in
Listing 8.9, where the x field is shadowed in the Sub class. Care will have to
be taken in the VerCors symbol tables that variable names are correctly scoped,
shadowed and hidden.
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Listing 8.9: Example of field shadowing. The arrows indicate which definition x is
referring to. Permissions are elided for brevity.

1 class Super {
2 int x;
3
4 //@ ensures x > 0;
5 void bound();
6 }
7 class Sub extends Super {
8 int x;
9

10 //@ ensures x > 10 && Super.this.x > 0;
11 void bound();
12 }

Overridden contract compatibility

Whenever methods are overridden and new contracts are specified, compatibility
of the super- and sub-contract must be checked. If proofs steps are supplied by the
overriding method, as mentioned in Section 8.2.2, these can be verified. If there
are no user-supplied proof steps, it must be checked if the compatibility is trivial
(i.e. the contracts are identical, or can be checked using boolean implication).

Additionally, as mentioned in Section 8.1.3, it is required to override a method
if resources are used in the contract for the static/dynamic approach. This check
needs to be implemented. Additionally, an exception can be implemented that
allows methods that have a boolean contract to be inherited safely.

Static/dynamic dispatch distinction

Whenever a method is called, the proper contract must be used based on static and
dynamic dispatch. For regular method calls, which are dynamically dispatched, the
dynamic contract must be used. For static method calls, such as private methods
or calls through super, the static contract must be used.

Semantics of APFs

Abstract predicate families and the syntaxes proposed in Section 8.2.2 each have
their own semantics, as described in Appendix D. These semantics will have to be
implemented accordingly and encoded in Silver abstract predicates.
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8.2.4 Informal semantics of inheritance rules
Appendix D includes an informal semantics of the constructs needed to support the
suggested approach in VerCors. From this list we discuss four rules, as they high-
light the complexities of static/dynamic contracts: (FinalCall), (DynamicCall),
(NewMethod) and (OverrideMethod).

Method calls

o : C requires F ; ensures G; public U C.m(X̄ x̄)
(DynamicCall)

{dynamic(F )} o.m(ē) {dynamic(G)}

o : C C <: D requires F ; ensures G; public final U D.m(X̄ x̄)
(FinalCall)

{static(F )} o.m(ē) {static(G)}

The (DynamicCall) rule expresses the semantics of a dynamic method call. This
rule is used if the method that is called can be overridden. It contrasts the
(FinalCall) rule, which is used for a method call that is final, i.e. a method
that cannot be overridden. For a dynamic call, the dynamic contract is used.
Since the specified contract is by default the dynamic contract, this means noth-
ing is changed. For a final call, the static contract is used, i.e. each predicate
instance p(ē) is replaced with a predicate entry p@C(ē).

Declaring methods

C extends D m /∈ D {static(F )} c̄ {static(G)}
(NewMethod)

requires F ; ensures G; public [final] U C.m(X̄ x̄) { c̄ }

{static(F )} c̄ {static(G)}
C extends D

requires F ′; ensures G′; public U D.m(X̄ x̄) { c̄ }
dynamic(F ′) −∗ dynamic(F )

dynamic(G) −∗ dynamic(G′)
(OverrideMethod)

requires F ; ensures G; public [final] U C.m(X̄ x̄) { c̄ }
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The (NewMethod) rule expresses the semantics of defining a new method. It
requires that the method does not exist in the superclass, and that the implemen-
tation adheres to the static contract.

A proof obligation that is missing here is the compatibility between the static
and dynamic contract: that the dynamic pre-condition implies the static pre-
condition, and the static post-condition implies the dynamic post-condition. However,
this proof obligation is not necessary. The contract of the method is assumed to
be the dynamic contract, and the static contract is derived from that. Deriving
the static contract is proven sound in [53].

The (OverrideMethod) rule applies when the method does exist in the super-
class. In this case, it must additionally be proven that the method contract implies
the super-method contract. This is indicated by the two separating implications.
Proving that the contract implies the super-method contract might be compli-
cated. For example, the proof might involve changing the arity of APFs, and
folding and unfolding of abstract predicates. Therefore, in some cases the user
might have to supply a proof with the method contract, which VerCors can then
verify.

8.3 Transformation of inheritance
To implement the semantic checks outlined in Section 8.2.3, transformations on the
AST need to be implemented in VerCors. They are categorised into five phases,
and are summarised in Figure 8.1. We give a brief overview of these phases, and
then discuss each of the phases and their internal transformation steps in detail.
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Java typing

Type info

Shadowing

Overriding & static/dynamic

APFs

Suggested approach

Figure 8.1: Summary of the transformation of a language with inheritance and
abstract predicate families to a language without inheritance and only abstract
predicates.

The first phase is the Java typing phase, which checks if all typing rules related
to inheritance outlined in The Java language specification are adhered to. Since
this is not the main focus of this work it is not discussed.

The second phase is the type info phase, which contains all typing-related
transformations. It encodes the Java type system in COL. This phase is discussed
in Section 8.3.1.

The third phase is the shadowing phase. It ensures fields are properly name-
spaced by class, such that subclasses can reuse names already defined in their
superclass. It is discussed in Section 8.3.2.

The fourth phase is the overriding & static/dynamic contract phase. It im-
plements the semantics of static/dynamic contracts as discussed in Section 8.1.3,
which ensures the Liskov Substitution Principle is enforced. It is discussed in
Section 8.3.3.

Finally, the fifth phase is the APF phase. It ensures APFs are encoded in
plain abstract predicates, and it implements the semantics of the new statements
suggested in Section 8.2.2. It is discussed in Section 8.3.4.

8.3.1 Typing
The typing phase ensures the Java type system is correctly encoded in COL. It
consists of two steps:

94



Encode type information in COL To encode Java type information in COL,
an axiomatic data type (ADT) must be added to the program. This ADT contains
all the types used by the program, and expresses the inheritance relations between
these types. As ADTs are not the focus of this work, we do not discuss the details
of the ADT. For more information about ADTs we refer the reader to [62]. An
example of how the ADT can be defined for a small number of types is included in
Appendix F. The type ADT in Appendix F was designed and implemented for the
Nagini verifier by Marco Eilers [23]. However, because of its generality, we believe
it can be used for Java verification in VerCors with few changes.

Once this type ADT is included, the type ADT functions must be added at
places in the AST where the type information is known, such that the type in-
formation can be used to perform checks that would normally be implemented
through run-time checks. Including type information about return values, method
arguments and newly created objects is straightforward, as the type information
can be added to contracts or included with the new call. An example of this is
shown in Rewrite rule 16.

true

C c = new C();
=⇒

C c = new C();
//@ assume typeof(c) ==

class_C();

Rewrite rule 16: Add explicit type information at new. The typeof and class_C
functions are introduced by the type ADT.

However, for object fields this is more complicated. As field accesses can appear
in many places, it is not immediately clear where this type information should be
added. To resolve this, we apply the same trick that is used by Brodowsky: we
attach type information to permissions [10]. This works because, to use fields,
permissions are needed. Therefore, if type information is attached to permissions,
whenever a field is used the type information will be present as well. An example
of this transformation is shown in Rewrite rule 17.

f : F

Perm(x.f, 1\2)
=⇒

Perm(x.f, 1\2) **
(x.f != null

==> x.f instanceof F
)

Rewrite rule 17: Shows how Perm can be annotated with type information. It is
assumed the static type of f is F
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Introduce proof obligations for runtime type checks When type infor-
mation is properly encoded in COL, checks can be added that enforce the type
system rules. Particularly, we present two checks to prevent ClassCastException
and ArrayStoreException in Rewrite rule 18.

true

Parent p = ...;
Child c = (Child) p;
Parent[] p_arr = ...;
Parent p2 = ...;
p_arr[0] = p2;

=⇒

Parent p = ...;
//@ assert p instanceof Child;
Child c = (Child) p;
Parent[] p_arr = ...;
Parent p2 = ...;
//@ assert p2 instanceof elemtype(

typeof(p_arr));
p_arr[0] = p2;

Rewrite rule 18: Insert type checks when casting. The elemtype function returns
the type of the elements of a given array type.

In our opinion, the second assert in the above rewrite rule models a complex
behavior of the Java type system: the dynamic type of p2 must be a subtype of
the dynamic element type of the p_arr array. This must be checked because the
dynamic type of p_arr might be Child[], or an array of any other subtype of
Parent. Therefore, assigning a Parent in a Parent[] is not always safe to do, and
must be checked.

8.3.2 Shadowing
The shadowing phase ensures that fields can be properly shadowed and field names
can be reused, as discussed in Section 8.2.3. This is done in a single step: each class
name must be prepended to the field name. This is to ensure that each field name
is unique within the inheritance hierarchy, as Silver does not support duplicate
field names. An example of this transformation is shown in Rewrite rule 19.

96



true

class A {
int x;

}
class B extends A {

int x;
...
x = 3;
A.this.x = 5;

}

=⇒

class A {
int A_x;

}
class B extends A {

int B_x;
...
B_x = 3;
A_x = 5;

}

Rewrite rule 19: Fields are qualified by class name.

8.3.3 Overriding & static/dynamic
The overriding & static/dynamic phase implements the static/dynamic contract
semantics discussed in Section 8.1.3, and ensures methods are inherited and over-
ridden safely. This happens in four steps:

Provide default implementations First, default implementations are pro-
vided where methods are not overridden. These default implementations imple-
ment the semantics of a non-overridden method: they inherit the contract, and
call the method in the superclass. Because shadowed variables have been distin-
guished in an earlier phase, the contracts do not have to be modified. Rewrite
rule 20 shows an example of adding such a default implementation.

Note that providing this default implementation does not mean it is safe to
inherit the method. As explained in Section 8.1.3, even a default implementation
might need proof steps to inherit a read-only method. Therefore, this approach
only allows automated inheritance of methods with trivial contracts: the contracts
can only contain permissions and boolean assertions. Contracts using APFs in
complex ways will not verify without additional proof steps. In short, if proof
steps are necessary for inheriting this method, verification will fail when checking
this default implementation.
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true

class A {
//@ requires P;
//@ ensures Q;
int m(int x);

}
class B extends A {
}

=⇒

class A {
//@ requires P;
//@ ensures Q;
int m(int x);

}
class B extends A {

//@ requires P;
//@ ensures Q;
int m(int x) {

return super.m(x);
}

}

Rewrite rule 20: Provide default implementations.

Check dynamic contracts A proof obligation must be produced that checks if
the dynamic contract of a subclass method is compatible with a superclass method.
This enforces the Liskov Substitution Principle, such that sub-methods can be used
in place of super-methods. If proof steps are supplied with the method definition
to prove this compatibility, they are included here.

The proof obligation is modelled as a new method on the subclass. The method
on the subclass has the contract of the method of the superclass, and calls the
method of the subclass. This ensures the super-pre-condition implies the sub-
pre-condition, and the sub-post-condition implies the super-post-condition. An
example of this transformation is shown in Rewrite rule 21. Note that within
compatible_m, the method m is called through dynamic dispatch, which ensures
the dynamic contract of B.m is used.
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true

class A {
//@ requires P;
//@ ensures Q;
void m(int x);

}
class B extends A {

//@ requires R;
//@ ensures S;
//@ with C;
//@ then D;
void m(int x);

}

=⇒

class A {
//@ requires P;
//@ ensures Q;
void m(int x);

}
class B extends A {

//@ requires R;
//@ ensures S;
void m(int x);

//@ requires P;
//@ ensures Q;
void compatible_m(int x) {

C;
m();
D;

}
}

Rewrite rule 21: Check compatibility of dynamic contracts

Check static contract The implementations of methods must be checked against
the static contracts. This is also modelled by introducing an additional method
where instead of the dynamic contract the static contract is used. To translate the
dynamic contract into a static contract, each APF instance with receiver this is
replaced with an APF entry of the current class. An example of this transformation
is shown in Rewrite rule 22.

true

class A {
//@ requires this.state();
//@ ensures this.state();
void m(int x) {

...
}

}

=⇒

class A {
//@ requires this.state();
//@ ensures this.state();
void m(int x);

//@ requires this.state@A();
//@ ensures this.state@A();
void static_m(int x) {

...
}

}

Rewrite rule 22: Check implementation against static contract
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Distinguish contract usage When methods are dynamically dispatched, the
dynamic contract should be used. When methods are statically dispatched, the
static contract should be used. This is enforced by distinguishing between calling
the dynamic or static method for each method call. When a method is called
through super, or a method is private, static dispatch is used. Otherwise, dynamic
dispatch is used.

To be able to refer unambiguously to the super-method, duplicate and overrid-
den method names need to be resolved. This is done by prefixing each method with
the name of the class it is defined in. This way, each class can refer to methods of
the parent unambiguously, similarly to shadowed fields.

Rewrite rule 23 shows an example of how this transformation is applied to
method calls. Note that, for the static dispatch call, the static contract method
introduced in the previous step is used, to force usage of the static contract of the
super-method.

true

class B extends A {
...
m(3);
super.m(5);
...

}

=⇒

class B extends A {
...
B_m(3);
A_static_m(5);
...

}

Rewrite rule 23: Force usage of dynamic contract for dynamic dispatch, and static
contract for static dispatch.

8.3.4 APFs
In the last phase, APFs are encoded into plain abstract predicates. This is done
through the following steps:

Encode semantics of new syntax The semantics of the new syntaxes dis-
cussed in Section 8.2.2 must be encoded in inhale/exhale statements. Most of
the proposed statements can be encoded in two actions: first removing a certain
APF from the state, and then adding a different APF to the state. Combined with
the specification of the semantics of the statements in Appendix D, the statements
are easily encoded into an exhale and inhale.

inhale and exhale are similar to the assume statement in regular program
logics. inhale adds a certain assertion to the current state. exhale asserts the
assertion, and then removes it from the current state. If exhale cannot assert the
assertion, the program cannot be verified.
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With these two statements, arbitrary permissions and APFs can be added
and removed from the program state. However, particularly inhale must be used
carefully, as it can introduce unsoundness when false facts or resources are inhaled.

For example, on the right side in Rewrite rule 24, this.p(x) is first checked
to be true. If so, it is removed from the state. Then, this.p(x, y) is added to
the program state.

While encoding most of the new syntaxes is straightforward, given-widen is
different from the other new syntaxes, because it introduces a new name into the
scope. We encode this in COL by inserting a new variable between the exhale and
inhale. After the given-widen, this new variable can be used to make assertions
about the APF. During type checking, it is ensured that the variable name used in
given-widen is unique. Since no assertions can be made about the new introduced
variable before the given-widen statement, the encoding is safe.

A brief example of this transformation is shown in Rewrite rule 24.

true

/*@ given (int y)
widen this.p(x); @*/ =⇒

//@ exhale this.p(x);
//@ int y;
//@ inhale this.p(x, y);

Rewrite rule 24: Encode given-widen into exhale and inhale.

Encode APFs into plain abstract predicates APFs can now be encoded in
plain abstract predicates. For each APF declaration, a plain abstract predicate is
created where the types of the arguments are included in the name of the APF.
This abstract predicate can never be unfolded, as it needs to be exchanged with
an APF entry first. Therefore, this new plain abstract predicate is not given a
body: unfolding this plain abstract predicate is not allowed, and is considered a
bug. This transformation is shown in Rewrite rule 25.
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true

// In class A:
/*@ resource state(int x) =

x == 5; @*/
// In class B:
/*@ resource state(int x, int y) =

y == 8; @*/

=⇒

// In class A:
/*@ resource state(int x) =

x == 5; @*/
// In class B:
/*@ resource state(int x, int y) =

y == 8; @*/
// Outside both classes:
//@ resource state_int(int x);
/*@ resource

state_int_int(int x, int y);
@*/

Rewrite rule 25: Encode APF declarations into plain abstract predicates. It is
assumed that predicates defined outside any class are plain abstract predicates,
which can always be folded and unfolded.

Then, for each APF declaration, an APF entry must be encoded in a plain
abstract predicate. This is done by creating a new plain abstract predicate ending
in the name of the class. The body of this predicate is identical to the body
of the APF declaration, in addition to an APF entry of the superclass. This is
needed to adhere to the extension approach, as discussed in Sections 8.1.3 and 8.2,
which allows several useful code patterns. This transformation is shown in Rewrite
rule 26.

B extends A

// In class B:
/*@ resource state(int x) =

x == 5; @*/ =⇒

// In class B:
/*@ resource state(int x) =

x == 5; @*/
// Outside any class:
/*@ resource state_B(int x) =

x == 5 ** state_A(x); @*/

Rewrite rule 26: Encode APF declarations into plain abstract predicates.

Finally, each use of an APF instance or APF entry can be replaced by the
appropriate version of the previously generated plain abstract predicates. This
exchange is shown in Rewrite rule 27.
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B extends A
// Abstract predicate instance:
//@ assert x.state(5);
// Abstract predicate entry:
//@ assert y.state@Cell(8);

=⇒

// Abstract predicate instance:
//@ assert x.state_int(5);
// Abstract predicate entry:
//@ assert y.state_Cell(8);

Rewrite rule 27: Replace APF usage with plain abstract predicates.

8.4 Evaluation
Because of time constraints, we have not implemented a prototype of the suggested
approach in VerCors. However, to showcase the approach, as well as give an
intuition for how it works, we apply the phases of the transformation manually to
an example program, and discuss the intermediate programs.

The example which is used for the evaluation is, to the best of our knowledge,
a correct annotated version of an example that often appeared in this work: the
Cell/ReCell example. The example is complete, except for constructors, to make
the example fit on one page. We list the example fully in Appendix G. Below, and
for the rest of this section, we will only list the ReCell class and the set method,
as the changes to the other methods and the Cell class are similar.

1 class ReCell extends Cell {
2 int bak;
3 //@ resource state(int x, int y) = Perm(bak, 1\1) ** y == bak;
4
5 //@ requires state(oldVal, oldBak);
6 //@ ensures state(newVal, oldVal);
7 /*@ with {
8 given (int oldBak) widen state(oldVal);
9 }; @*/

10 /*@ then {
11 narrow state(newVal, oldval);
12 }; @*/
13 void set(int newVal) {
14 //@ unfold state@ReCell(x, y);
15 bak = super.get();
16 super.set(newVal);
17 //@ fold state@ReCell(x, y);
18 }
19 }

First, the typing phase is applied. Changes from this phase are minimal: only
the Perm expressions are exchanged for Perms that include type information, as
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discussed in Section 8.3.1. Therefore, this intermediate program is not discussed.
Then, the shadowing phase is applied, resulting in the following partial pro-

gram:

1 class ReCell extends Cell {
2 int ReCell_bak;
3
4 /*@ resource state(int x, int y) =
5 Perm(ReCell_bak , 1\1) ** y == ReCell_bak; @*/
6
7 //@ requires state(oldVal, oldBak);
8 //@ ensures state(newVal, oldVal);
9 /*@ with {

10 given (int oldBak) widen state(oldVal);
11 }; @*/
12 /*@ then {
13 narrow state(newVal, oldval);
14 }; @*/
15 void set(int newVal) {
16 //@ unfold state@ReCell(x, y);
17 ReCell_bak = super.get();
18 super.set(newVal);
19 //@ fold state@ReCell(x, y);
20 }
21 }

The field names are now unique, as they are prefixed by the name of the class.
Note how bak was renamed to ReCell_bak at both the definition on line 2 and
the usage on line 17.

Then, the static/dynamic phase is applied:
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1 class ReCell extends Cell {
2 int ReCell_bak;
3
4 /*@ resource state(int x, int y) = Perm(ReCell_bak , 1\1)
5 ** y == ReCell_bak; @*/
6
7 //@ requires state(oldVal, oldBak);
8 //@ ensures state(newVal, oldVal);
9 void ReCell_set(int newVal);

10
11 //@ requires state@ReCell(oldVal, oldBak);
12 //@ ensures state@ReCell(newVal, oldVal);
13 void ReCell_static_set(int newVal) {
14 //@ unfold state@ReCell(x, y);
15 ReCell_bak = Cell_static_get();
16 Cell_static_set(newVal);
17 //@ fold state@ReCell(x, y);
18 }
19
20 //@ requires state(oldVal);
21 //@ ensures state(newVal);
22 void compatible_set(int newVal) {
23 //@ given (int oldBak) widen state(oldVal);
24 ReCell_set(newVal);
25 //@ narrow state(newVal, oldval);
26 }
27 }

The phase applied three changes to the partial program.
First, the set method is split up in two: the dynamic and the static defini-

tion. The dynamic definition starting on line 7 models the dynamically dispatched
method, which has the dynamic contract of set. The dynamically dispatched im-
plementation reuses the statically dispatched implementation, so the dynamically
dispatched method has no body.

The static definition starts on line 11, and it models the statically dispatched
method. The statically dispatched method also checks if the method implemen-
tation adheres to the static contract. Therefore, in contrast to the dynamically dis-
patched method, it does have a body. Note that the contact of ReCell_static_set
was also changed: each APF instance in the contract was replaced by the APF
entry state@ReCell.

Second, ambiguous method names are now distinguished by class name at both
the definition and where they are called. Furthermore, each method definition and
call now indicates if it uses the static or dynamic contract. For example, on line 16,
Cell.set was originally called through super, which is a statically dispatched call.
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Now, the statically dispatched method & contract of Cell.set is used.
Third, the contract compatibility of Cell.set and ReCell.set is checked

through the generated method compatible_set. In this case, the proof steps
supplied in the original program are also used in the compatibility proof.

If the proof steps were not supplied, the body of compatible_set would con-
sist of only the call ReCell_set(newVal). This would not be verifiable, as the
state predicate would not have the correct number of arguments for ReCell_set.
However, in this case, because of the proof steps that add the oldBak argument,
the method verifies.

Now that the static/dynamic contract semantics are encoded, the APF phase
is applied:

1 //@ resource state_int(Object this, int x);
2 //@ resource state_int_int(Object this, int x, int y);
3 /*@ resource state_Cell(Cell this, int x) =
4 Perm(Cell_val, 1\1) ** x == Cell_val; @*/
5 /*@ resource state_ReCell(ReCell this, int x, int y) = state_Cell(x)
6 ** Perm(ReCall_bak , 1\1) ** y == ReCell_bak; @*/
7
8 class ReCell extends Cell {
9 int ReCell_bak;

10
11 //@ requires state_int_int(this, oldVal, oldBak);
12 //@ ensures state_int_int(this, newVal, oldVal);
13 void ReCell_set(int newVal);
14
15 //@ requires state_ReCell(this, oldVal, oldBak);
16 //@ ensures state_ReCell(this, newVal, oldVal);
17 void ReCell_static_set(int newVal) {
18 //@ unfold state_ReCell(this, x, y);
19 ReCell_bak = Cell_static_get();
20 Cell_static_set(newVal);
21 //@ fold state_ReCell(this, x, y);
22 }
23
24 //@ requires state_int(this, oldVal);
25 //@ ensures state_int(this, newVal);
26 void compatible_set(int newVal) {
27 //@ exhale state_int(this, oldVal);
28 //@ int oldBak;
29 //@ inhale state_int_int(this, oldVal, oldBak);
30 ReCell_set(newVal);
31 //@ exhale state_int_int(this, newVal, oldVal);
32 //@ inhale state_int(this, newVal);
33 }
34 }
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In the final partial program, three major changes are visible.
First, the state APF is split up into four distinct plain abstract predicates

on line 1: two relating to the APF instances with no bodies, and two relating to
the APF entries with bodies. Each use of an APF instance or entry has also been
replaced with the appropriate plain abstract predicate, such as on lines 11 and 18

Second, given-widen and narrow have been replaced by pairs of exhale and
inhale, reflecting the semantics of the statements.

Third, the receivers of the APF state have been lifted into the first argument
of the APF state. This is needed because plain abstract predicates do not have
receivers, but are stand-alone predicates independent of a class.

To conclude, after applying the transformation suggested in this chapter, im-
plicit semantics such as overriding, field shadowing, static/dynamic dispatch, and
APF extension have been made explicit. The only aspects of inheritance that
remain are using fields from superclasses, and calling methods from superclasses.
These two aspects can be handled by the transformation that removes the class
hierarchy from COL: silver-class-reduction. This transformation is respon-
sible for transforming class methods into free functions, and aggregating all fields
in the program in one place. The implementation of silver-class-reduction
will have to be adjusted, but we believe this will be straightforward as the AST
contains only unambiguous references at this point. As silver-class-reduction
is already part of VerCors, we will not discuss it here.
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Chapter 9

Related Work

There are eight practical checkers that support exceptions and/or inheritance with
separation logic, each with their own level of support. These are: Nagini, Verifast,
jStar, Key, OpenJML, JaVerT, Krakatoa and VerCors. Of these, Nagini, jStar
and Verifast have the highest level of support, and are comparable to VerCors.
They are discussed first. Then the other five checkers are discussed.

9.1 Nagini
Exceptions Nagini fully supports exceptions in the Python language. This
means it supports the Python equivalents of the statements break, continue,
return, try, catch, and finally. This is done by encoding the control flow into
an auxiliary state variable that indicates if the function is currently breaking, con-
tinuing, returning, or throwing. We have concluded this after examination of the
source code and by manually inspecting the output of the tool.

At first sight it seems that the Python exception model is identical to the
exception model of Java. However, there is one subtle difference: Python does not
allow labeled breaks. As labeled breaks complicate the verification of finally
(explained in Section 7.1.4), the implementation strategy employed by Nagini is
not directly usable for verifying exceptions in Java and would have to be extended.

It is interesting to note that while exploring the capabilities of Nagini regard-
ing exceptions, we discovered a bug in Nagini [60]. It was quickly fixed by the
developers after reporting it.

The main difference between VerCors and Nagini with regard to exceptions is
that Nagini has a single-pass architecture and VerCors a multi-pass architecture.
The auxiliary state approach fits the single-pass architecture, as it only requires the
ability to emit queries and mutations of the control-flow variable. It also happens
to be efficient, at the expense of extra bookkeeping. However, it is not flexible.
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This is not a problem for Nagini as Python does not have a statement similar to
labeled break. The multi-pass architecture of VerCors allows the more flexible
and modular multi-pass approach, at the expense of needing multiple passes. This
is necessary to support labeled break while at the same time keeping VerCors as
maintainable as possible. This is a classic trade-off: the single-pass approach is
more complex and performant, while the multi-pass approach is less complex but
less performant.

Inheritance Nagini has broad support for inheritance in Python. As long as
the input is annotated with types as specified in PEP 484 [57], Nagini can reason
about the types and subclasses of objects. For semantics of types, Nagini adopts
the model of MyPy [69].

Nagini uses non-modular APFs, as discussed in Section 8.1.3. We have con-
cluded this after inspection of the source code and tool output. In Listing 9.1 an
example of inheritance as supported by Nagini is given. Here Parent and Child
both define an entry in the APF abstract_predicate_family. Then, at line 29,
the predicate instances of Parent and Child can be used, but only if the dynamic
type is a subtype of those types.

There is one technical issue that Nagini worked around in an interesting way.
The problem is that of folding its non-modular APFs. See again Listing 9.1, line 9.
Here the APF abstract_predicate_family is folded because the constructor
needs to satisfy the postcondition. This is fine if the constructor runs for Parent,
but it is problematic if the dynamic type of self is Child. When the dynamic
type is Child, childBody also needs to hold, which is not the case. Hence this
should result in an error.

Nagini works around this by inlining the constructor for the super call at
line 18. Additionally, when the method is inlined, Fold statements are not in-
cluded. This way parentBody stays in the scope for the later Fold at line 22.
This is illustrated by the pair of Asserts at line 19.

This approach is effective as long as the user stays within the intended uses of
APFs. Once users start wrapping APFs inside regular predicates, problems can
occur. A pathological example of such a situation is given in appendix C.

9.2 Verifast
Exceptions Verifast almost fully supports Java exceptions. This means break,
return, continue, throw, try, and catch are all supported. These are encoded
directly into SMT. The only language feature missing is finally. As mentioned
in [38], the authors of Verifast are not yet sure what would be an acceptable way
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Listing 9.1: Brief example usage of inheritance and APFs as supported by Nagini.
1 class Parent:
2 @Predicate
3 def abstract_predicate_family():
4 return parentBody
5
6 def __init__(self):
7 Ensures(self.abstract_predicate_family())
8 ...
9 Fold(self.abstract_predicate_family())

10
11 class Child(Parent):
12 @Predicate
13 def abstract_predicate_family():
14 return childBody
15
16 def __init__(self):
17 Ensures(self.abstract_predicate_family())
18 super(Child, self).__init__()
19 Assert(parentBody) # Proven
20 Assert(self.abstract_predicate_family()) # Rejected
21 ...
22 Fold(self.abstract_predicate_family())
23
24 def foo(p: Parent):
25 Requires(p.abstract_predicate_family())
26 # Contract ends here
27
28 Unfold(p.abstract_predicate_family())
29 Assert((parentBody if isinstance(p, Parent) else True)
30 and (childBody if isinstance(p, Child) else True))
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of encoding finally clauses, which is the reason why it does not support it at the
time of writing.

Inheritance Verifast has mature support for inheritance, as introduced in ‘VeriFast
for Java’ [65]. It supports modular verification of inheritance using static/dynamic
contracts and APFs, as discussed in Section 8.1.3. Verifast APFs follow the op-
tionally extended form, as outlined in [54]. That means that when an APF entry
is unfolded, it is not guaranteed a predicate entry of the superclass is included.
The static/dynamic contracts of Verifast are automatically derived from one single
contract to allow for succinct specification of methods.

Support for inheritance in Verifast is limited in two specific ways.
First, it is not possible to provide static and dynamic contracts separately.

While Parkinson and Bierman suggest most patterns can be implemented without
separate contracts [53], if this is at some point needed for fine-grained control this
could be a problem when using Verifast. Our suggested for VerCors also does not
allow this.

Second, Verifast APFs have a fixed number of arguments. This means that
if a subclass is added that wants to expose additional state through an extra
parameter, the base class will have to be changed. This limitation is manageable
if regular refactorings of parent classes are acceptable. Our suggested VerCors
does allow a form of variable arity APFs.

Since Verifast uses the static/dynamic approach, all limitations discussed in
Section 8.1.3 apply. While we have no concrete discussions or citations confirming
this, we suspect the Verifast developers are aware of the side-calling limitation of
the static/dynamic approach. As an example of this we refer the reader to one of
the examples of the Verifast example directory at [56]. Here, the final attribute
is needed when declaring the ArrayList class. If this attribute is removed, the
addAll method cannot be verified, as it calls the add method.

9.3 jStar
Exceptions From manual inspection of the source, we have concluded that jS-
tar supported exceptions up to finally, similar to Verifast. Because break and
finally are not considered, we expect that their support for exceptions has been
implemented through goto or direct support in their symbolic execution imple-
mentation.

Inheritance Similar to VerCors, jStar supports inheritance through APFs and
the static/dynamic approach. However, besides that it supports two novel fea-
tures that we nor Verifast or Nagini supports. These are automatic inheritance of
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methods, and support for manually specifying both static and dynamic contracts.
jStar also supports variable argument APFs, similar to our suggested approach.

Variable argument APFs are supported through width subtyping. Type T is a
width subtype of U if T has at least every field that U also has by name. However,
T might also have fields that U does not have. An example definition of an APF
in jStar is presented in Listing 9.2, paraphrased from [19].

Listing 9.2: Example of defining an APF in jStar
1 class Cell {
2 define Val(x, content = y) as x.<Cell: int val> |-> y
3 }

The APF Val is an APF with two arguments. First there is x, which is a
reference to an object with a val field. Second there is the value y, which should
be equal to the value pointed to by x.val. This APF can be extended by a subclass
as follows:

Listing 9.3: Example of extending an APF in jStar
1 class ReCell extends Cell {
2 define Val(x, content = y; old = z) =
3 Val$Cell(x, {content = y}) * x.<Recell: int bak> |-> z
4 }

This extended Val APF defines an extra argument, old, which indicates the
previous value x.val had. It also includes the APF entry from Cell, as indicated
by the Val$Cell predicate. Because of width subtyping, these two predicate defi-
nitions can both be used. If the old argument is not needed, it can be omitted. If
it is not present but needed, it is existentially quantified. For example, the <init>
method of Cell can have the following contract shown in Listing 9.4. In this case,
the content field is existentially quantified: it has a value, but its specific value
is not given.

Listing 9.4: Example of a constructor with a contract existentially quantifying
the content field. <init> is the name of the method in jStar that models the
constructor.

1 void <init>() :
2 {} // Precondition
3 { Val$(this, {content=_})} // Postcondition

Automatic inheritance of methods is facilitated through the axiom system in
jStar. This axiom system allows users to define axioms, which are assumed to
be true by the prover in jStar. Of course each axiom should be accompanied by
a hand-written proof. These axioms allow jStar to prove inheritance of methods
correct, as long as the set of provided axioms is sound.
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jStar allows the user to specify static and dynamic contracts separately. If this
is not needed the user can use a shorthand of using a $ after an APF. This causes
jStar to derive the static and dynamic contracts in a way similar to Verifast.

9.4 KeY
KeY supports Java exceptions fully. KeY is based on the JavaDL logic, as de-
scribed in [1]. JavaDL provides axiomatic rules for dealing with exceptions and
labeled breaks. Therefore, to handle Java, continue and return must be trans-
formed into labeled breaks. Extra flag variables are also added to keep track of
what kind of control flow is happening. This is needed such that when a loop
terminates, it can be deduced if it was normal termination or some kind of abrupt
termination. Deductive Software Verification - The KeY Book by Ahrendt et al. [1]
describes this transformation.

As described in [68], this approach is soon to be replaced by the loop scopes
approach, described in the same paper. This new approach reduces the number of
proof obligations KeY generates in most cases when dealing with abrupt termina-
tion in loops. This is achieved by encoding the kind of abrupt termination that is
happening in the axiomatic rules, instead of putting it in auxiliary state variables
as in the previous approach.

9.5 OpenJML
OpenJML also supports the full subset of Java exceptions, as well as extensive
JML support for specifying the behaviour of exceptions. In [68] it is mentioned
that exceptions and abrupt termination are implemented in OpenJML by encoding
the control flow in goto.

9.6 JaVerT
JaVerT supports exceptions as defined in ECMAScript 5 Strict mode fully. Unfortunately
we have not been able to get JaVerT to compile and run. However, from the im-
plementation we have deduced that JaVerT takes the approach of compiling ex-
ceptions directly to gotos. It is currently unclear to us if JaVerT handles finally
correctly, as it cannot be clearly discerned from the implementation if finally
blocks are inlined, or if auxiliary variables are used to keep track of control flow.
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9.7 Krakatoa
Krakatoa supports exceptions, but the level of support is unclear. It accom-
plishes this by compiling Java exceptions into the more limited exception model
of WhyML. It claims to support finally. However, from manual inspection of
the source it does not seem that finally is properly supported. We have con-
cluded this from the fact that in the file jc_interp.ml, which is responsible for
WhyML code generation, finally clauses are ignored. There is also an empty
TODO comment at this location.

Krakatoa takes a similar approach to the one suggested in this work by encoding
Java exceptions into the cleaner exception model of WhyML. However, there are
three differences. First, Krakatoa does not do the final translation step into goto.
Second, if our observations are correct, Krakatoa does not support finally. Third,
the developers of Krakatoa seem to have missed the insight that the reduction of
abrupt termination to exceptions allows for uniform handling of finally, resulting
in a simpler transformation. Since Krakatoa uses an architecture based on an
intermediate representation that is passed through various transformations, we
expect they could use this insight effectively.

9.8 VerCors
VerCors has had partial support for inheritance in Java for some time. It has
a sparsely documented interface with only a few examples in the test set using
the functionality. It has been maintained to keep the few examples in the test
set running. However, no structural maintenance has been done. The intended
semantics of the functionality was also unclear, but the work by Parkinson &
Bierman was mentioned in the documentation.

As far as we know, it used a combination of extended by default predicates
from [36], combined with the static/dynamic contract approach of [55]. However,
programs that tried to use these features often failed because support was only
partially implemented.
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Chapter 10

Conclusion

This work aimed to design and document verification support for exceptions and
inheritance in Java. To achieve this, we first did a literature study to establish
what the state of the art is for verification of exceptions and inheritance. We
found that for concurrent languages, the support for exceptions and inheritance is
not the rule but the exception. In particular for inheritance the implementation
techniques and supported features varied per tool.

We then considered the state of the art approaches and analysed them for
incompatibilities with concurrent environments. For exceptions, we discovered
an approach that leads to a more modular implementation than what is often
implemented in practice. By transforming break and return to exceptions first,
the semantics of finally are more modular and the transformation to goto is
simpler.

For inheritance, we catalogued and made explicit the trade-offs of the known
approaches. We concluded it is beneficial for VerCors to combine the APF exten-
sion approach with the static/dynamic contract approach. This allows for modular
verification of inheritance, allows several useful code patterns, and integrates well
with existing VerCors features.

We also conclude that the currently existing techniques for verification of in-
heritance all have different characteristics and trade-offs. Therefore we believe
verification of inheritance in Java is still an open problem.

With this knowledge, we designed a transformation for use in the VerCors tool.
The transformations for both inheritance and exceptions make use of the pass-
based architecture of VerCors to achieve modular transformations. The proposed
design for exceptions was implemented and evaluated using several examples. For
inheritance, the proposed design was evaluated by manually applying the proposed
transformation to an example.

We conclude that for state-of-the-art verifiers it is currently straightforward to
support exceptions and inheritance. Particularly for exceptions, with the current
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level of existing research and experience, support is only limited by implementation
effort. For inheritance support is less obvious, as the state-of-the-art techniques for
inheritance still have several shortcomings and trade-offs. However, basic support
is straightforward through currently known techniques.

10.1 Future work
We think the following directions of research are interesting for future work:

10.1.1 Formal proof of correctness
Correctness of the transformations presented in this work depend on informal
reasoning and textual arguments. A formal proof using an ITP such as Isabelle
or Coq would not only be useful for fixing bugs in the suggested approaches, but
also increase the confidence in the correctness of the VerCors tool.

10.1.2 Further improving language support
Java language support can be further improved. Lambdas and inner classes are two
examples of language features that are also frequently used in commercial software
but not yet supported in static verifiers. We believe that providing basic verifi-
cation support is straightforward. However, providing a convenient verification
syntax for these features is not, and requires further research.

Another example of a problematic practical language feature is spurious ex-
ceptions, such as OutOfMemoryError. These are currently ignored by most static
verifiers, including VerCors. However, they can still be problematic in commer-
cial software. Since specifying these exceptions is technically possible, we think
research into reducing the notational overhead these kinds of exceptions introduce
would be beneficial. This would allow practical verification of programs in the
presence of spurious exceptions.

10.1.3 Standard library specification
Java programs frequently use the standard library. It would be useful to have a
formal specification of the Java standard library, as it would increase the number of
programs that VerCors can verify. We think the two most interesting standard li-
brary features are the InterruptedException and Thread.UncaughtExceptionHandler.
These two aspects of the Java standard library will prove challenging, but are im-
portant for proving safety and liveness properties.
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10.1.4 Improving theory of inheritance
Side-calling in general is heavily relied upon in Java. Further research will have
to be done if the capacity for side-calling can be regained while still retaining
modelling power and modularity. We expect that APFs will have to be changed
to achieve this.

A radical solution would be to side-step the problem and restrict Java inher-
itance to interfaces. A practical example of this is Classless Java [74]. Research
could be done into if this simplified version of Java is more amenable to formal
verification.

Finally, the approach presented in this work could also be further optimized
for use of interface inheritance.
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Appendix A

List of Rewrite Rules

1 Transform subroutine to goto. In pseudo-assembly. . . . . . . . . . 58
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27 Replace APF usage with plain abstract predicates. . . . . . . . . . 103
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Appendix B

Code duplication increases
verification time

In this appendix we will discuss a small informal experiment that shows that
code duplication indeed causes increased verification time. First we will discuss
the problem, followed by the design of the experiment. Then we will discuss the
results, and will conclude with a brief explanation of the source code format used
in the experiment.

B.1 Problem statement
Some approaches in this work, such as the inlining approach suggested in Section 7.1.5,
duplicate statements. By applying this transformation, the final result of the pro-
gram remains the same, but the number of statements in the program submitted to
Viper will increase. Currently, VerCors does not have facilities to mark these state-
ments as “duplicate” in any way to prevent duplicate proof obligations. Therefore,
our hypothesis is: duplication of program elements will increase verification time.

B.2 Method
VerCors does modular verification. This means that effectively methods are con-
sidered in isolation. Therefore we want to measure the effect of duplication at both
levels: at the level of one isolated unit, and the level of multiple isolated units.
To achieve this, we will duplicate a particular statement, and also whole methods.
This will give insight if VerCors can reuse proofs from related statements, and also
if VerCors can reuse proofs from similar methods.

The program that we will test will need to have a noticeable but short ver-
ification time. It is included in Section B.4. For this we picked an incomplete
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Figure B.1: The continuous line shows the verification time when only the method
is duplicated. The dashed line shows the verification time when only the assert is
duplicated. Shown up to 40 repetitions.

annotated implementation of the merge sort algorithm from our personal archives.
Verification of this program takes 8.6 seconds on average. The specific assert that
was picked from this program contributes 0.4 seconds to the total verification time
on average.

For each duplication, verification time will be measured. Verification time will
be measured by doing one warm-up run, and then 5 runs of which verification
time will be averaged. The assert and method will be duplicated independently.
This approach should show the impact of duplicating statements and methods. If
VerCors can reuse parts of the proof, the duration should not increase linearly or
even stay the same. If VerCors cannot reuse parts of the proofs, the growth of
verification duration should be a straight line.

The experiment was run on a Thinkpad P50 with an Intel i7-6700HQ CPU at
2.60GHz. The commit for VerCors used is:

f6f45dc1717a99fb3b6df6fefb1de831d5e72b3d

B.3 Results & Discussion
The results for the first 40 runs are shown in Figure B.1. The results for all 400
runs are shown in Figure B.2.

It is shown in Figure B.1 that verification incurs a substantial start cost of 8
seconds. However, as asserts and methods are duplicated, the verification time

130



0 100 200 300 400
0

100

200

300

Snippet repetitions

Ve
rifi

ca
tio

n
du

ra
tio

n
(s

)

Verification duration as a function of code snippet repetitions

Method
Assert

Figure B.2: The continuous line shows the verification time when only the method
is duplicated. The dashed line shows the verification time when only the assert is
duplicated. Shown up to 400 repetitions.

grows in a linear progression less steep than an extrapolation of the initial verifi-
cation time.

The data suggest that VerCors can reuse proofs from earlier assertions, as
adding assertions adds less time than having only one of the assertion at the begin-
ning. Furthermore, it also suggests VerCors can reuse proofs from earlier method
definitions, as that line also grows less steep than the initial growth. However, the
proofs from earlier statements is not zero: duplicating statements and methods
clearly increase verification time. Therefore, we conclude that while the impact
of repeating code is not big, it is not the case that repeated code does not cause
extra overhead: duplication of statements and methods will increase verification
time.

B.4 Source code used in the experiment
Below the source of the program used for testing is presented. The sections that
are repeated are delineated by comments of the form

// performance duplication section start
.. regular code ...
// performance duplication section end.

These comments are picked up by a script, which repeats the sections if needed
and then runs VerCors on the duplicated program.
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The method that is repeated begins on line 18. The assert that is duplicated
is on line 58.

1 class MyClass {
2 ensures \result <= a && \result <= b;
3 pure int min(int a, int b) = a < b ? a : b;
4
5 requires (\forall int i; 0 <= i && i < |xs|;
6 (\forall int j; 0 <= j && j < i; xs[j] <= xs[i]));
7 requires (\forall int i; 0 <= i && i < |ys|;
8 (\forall int j; 0 <= j && j < i; ys[j] <= ys[i]));
9 ensures |\result| == (|xs| + |ys|);

10 ensures (|xs| > 0 && |ys| == 0) ==> \result == xs;
11 ensures (|xs| == 0 && |ys| > 0) ==> \result == ys;
12 ensures (|xs| == 0 && |ys| == 0) ==> |\result| == 0;
13 ensures (|xs| > 0 && |ys| > 0) ==> \result[0] == min(xs[0], ys[0]);
14 ensures (\forall int i; 0 <= i && i < |\result|;
15 (\forall int j; 0 <= j && j < i; \result[j] <= \result[i]));
16 seq<int> mergeSeq(seq<int> xs, seq<int> ys);
17
18 // ----- performance duplication method start
19 ensures (\forall int i; 0 <= i && i < |\result|;
20 (\forall int j; 0 <= j && j < i; \result[j] <= \result[i]));
21 seq<int> mergeSortXXX(seq<int> xs) { // X X X is replaced with number!
22 if (|xs| <= 1) {
23 assert (\forall int i; 0 <= i && i < |xs|;
24 (\forall int j; 0 <= j && j < i; xs[j] < xs[i]));
25 return xs;
26 } else {
27 int len = |xs|;
28 int pivot = len / 2;
29
30 seq<int> ys = seq<int>{};
31 loop_invariant 0 <= i && i <= pivot;
32 loop_invariant |ys| == i;
33 loop_invariant (\forall int k; 0 <= k && k < i; xs[k] == ys[k]);
34 for (int i = 0; i < pivot; i = i + 1) {
35 ys = ys + seq<int>{xs[i]};
36 }
37
38 assert (\forall int k; 0 <= k && k < pivot; xs[k] == ys[k]);
39
40 seq<int> zs = seq<int>{};
41 loop_invariant pivot <= j && j <= |xs|;
42 loop_invariant |zs| == (j - pivot);
43 loop_invariant (\forall int k; pivot <= k && k < j; xs[k] == zs[k - pivot

]);
44 for (int j = pivot; j < |xs|; j = j + 1) {
45 zs = zs + seq<int>{xs[j]};
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46 }
47
48 assert (\forall int k; pivot <= k && k < |xs|; xs[k] == zs[k - pivot]);
49
50 assert xs == (ys + zs);
51
52 seq<int> as = mergeSortXXX(ys);
53 seq<int> bs = mergeSortXXX(zs);
54
55 assert (\forall int i; 0 <= i && i < |as|;
56 (\forall int j; 0 <= j && j < i; as[j] <= as[i]));
57
58 // ----- performance duplication assert start
59 assert (\forall int i; 0 <= i && i < |bs|;
60 (\forall int j; 0 <= j && j < i; bs[j] <= bs[i]));
61 // ----- performance duplication assert end
62
63 return mergeSeq(as, bs);
64 }
65 }
66 // ----- performance duplication method end
67 }
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Appendix C

Wrapped APF issue

In Nagini, when an APF is wrapped in a predicate and used in the postcondition
of a constructor, the Fold is not included when inlining the constructor in a child
constructor. Hence, any Folds depending on earlier Folds of APFs unexpectedly
fail.

Clearly the inlining of the method fails here because a fold is missing. Hence,
Child can never implement its constructor. However, the right way to go would be
to refactor, since this program structure is not useful. This would solve the issue.

A copy of the error message output by Nagini when this file is verified is
included in the listing at line 46.
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Listing C.1: Demonstrates verification failure when an APF is wrapped in a pred-
icate and used in the postcondition of a constructor.

1 from nagini_contracts.contracts import *
2
3 # First activate the nagini environment:
4 # $ source ~/UNSAFE/dummy/nagini_test/nagini_env/bin/activate
5 # Then run:
6 # $ nagini apf_inlining_practicality_issue.py
7
8 class Parent:
9 @Predicate

10 def p(self, x: int) -> bool:
11 return Acc(self.v) and self.v == x
12
13 def __init__(self) -> None:
14 Ensures(wrapper_p(self, 0))
15
16 self.v = 0
17 Fold(self.p(0))
18 Fold(wrapper_p(self, 0))
19
20 @Predicate
21 def wrapper_p(self: Parent, x: int) -> bool:
22 return self.p(x)
23
24 class Child(Parent):
25 def __init__(self) -> None:
26 Ensures(child_p(self, 0))
27
28 # Error at the following line because
29 # the second fold in super.__init__ fails
30 super(Child, self).__init__()
31
32 self.bak = 0
33
34 # Hence the following lines can never succeed
35 Fold(wrapper_p(self, 0))
36 Fold(child_p(self, 0))
37
38 @Predicate
39 def child_p(self: Child, x: int) -> bool:
40 return Acc(self.bak) and self.bak == x and wrapper_p(self, x)
41
42 def main() -> None:
43 parent = Parent()
44 Assert(wrapper_p(parent, 0))
45
46 # Error:
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47 #
48 # (nagini_env) bobe@lapbobe:~/UNSAFE/Studie/thesis/python_programs
49 # $ nagini apf_inlining_practicality_issue.py
50 # Verification failed
51 # Errors:
52 # Fold might fail. There might be insufficient permission to access

self.p(x). (apf_inlining_practicality_issue.py@18.8, via static
call at apf_inlining_practicality_issue.py@30.8)

53 # Verification took 8.16 seconds.
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Appendix D

Informal Inheritance Semantics

D.1 Introduction
This appendix presents an informal semantics for the inheritance approach and
new syntax suggested in Chapter 8. It is not intended to be formal or leading over
the information presented in Chapter 8, but meant to accompany Chapter 8 and
supply more information in situations where Chapter 8 fails to convey the proper
idea or is incomplete.

Ideally it would be used to document and further develop inheritance support
in VerCors.

D.2 Notation
Most of the notation used in this appendix should be similar to notation used in
logic in general, as well as the works of [54] and [36]. However, for completeness,
we include an overview of the notation used.

o : C means the static type of o is equal to class C.
C <: D means C extends/implements D.
Elements in code font [between brackets] are optional.
P [ē/x̄] means P where every xi is replaced with ei.
x̄ means for a sequence of n variables x0, · · · , xn−1.
|x̄| means length of sequence x̄.
x̄ ⊆ ȳ means |x̄| ≤ |ȳ| ∧ ∀i ∈ [0, |x̄|) . xi = yi
static(F ) replaces every occurrence of this.p(ē) with this.p@C(ē) where this :

C.
dynamic(F ) does not change the contract. It is included for symmetry with

static(F ).
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public/private qualifiers are ignored on predicates. Predicates can be fold-
ed/unfolded by any class. APF entries can only be folded/unfolded by the class
defining the specific APF entry. This is chosen this way because it is the cur-
rent state of VerCors. In the future, it is probably a good idea to respect the
accessibility qualifiers of predicates in a useful way.

To keep the rules for method and constructor calls brief, it holds that for
any rule correlating a call and a definition the arity of the definition is the same
as the arity of the call. This does not include given and yields: in the proof
steps proving compatibility between a sub-method and a super-method, given
parameters of the sub-method can be given a value through given-widen and
unfolding of predicates. Parameters can also be left unused if the overridden APF
of the subclass has less parameters.

Ghost-code or specification delimiters such as //@ or /*@ ... @*/ are not
included in the rules, but should be used in Java code where appropriate.

D.3 Rules
Method calls

o : C C <: D requires F ; ensures G; public final U D.m(X̄ x̄)
(FinalCall)

{static(F )} o.m(ē) {static(G)}

o : C requires F ; ensures G; public U C.m(X̄ x̄)
(DynamicCall)

{dynamic(F )} o.m(ē) {dynamic(G)}

this : C requires F ; ensures G; private [final] U C.m(X̄ x̄)
(PrivateCall)

{static(F )} this.m(ē) {static(G)}

Constructor calls

requires F ; ensures G; public [final] U C(X̄ x̄)
(New)

{static(F )} new C(ē) {static(G) ∗ \result.getClass() == C.class}
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super calls

this : C C extends D

requires F ; ensures G; public [final] U D(X̄ x̄)
(SuperConstructor)

{static(F )} super(ē) {static(G)}

this : C

C extends D

requires F ; ensures G; public [final] U D.m(X̄ x̄)
(SuperCall)

{static(F )} super.m(ē) {static(G)}

Method declaration

Declare a new method:

C extends D m /∈ D {static(F )} c̄ {static(G)}
(NewMethod)

requires F ; ensures G; public [final] U C.m(X̄ x̄) { c̄ }

Override an existing method:

{static(F )} c̄ {static(G)}
C extends D

requires F ′; ensures G′; public U D.m(X̄ x̄) { c̄ }
dynamic(F ′) −∗ dynamic(F )

dynamic(G) −∗ dynamic(G′)
(OverrideMethod)

requires F ; ensures G; public [final] U C.m(X̄ x̄) { c̄ }

Using abstract predicates

o : C C extends D p /∈ D final resource C.p(X̄x̄) = P
(UnfoldPredicate)

{o.p(ē)} unfold o.p(ē) {P [ē/x̄]}
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o : C C extends D p /∈ D final resource C.p(X̄x̄) = P
(FoldPredicate)

{P [ē/x̄]} fold o.p(ē) {o.p(ē)}

Defining abstract predicates

C extends D p /∈ D
(NewPredicate)

final resource C.p(X̄x̄) = P

Using Abstract Predicate Family Entries

o : C C extends D resource D.p(Ȳ ȳ) = Q f̄ ⊆ ē

[final] resource C.p(X̄x̄) = P
(UnfoldEntry)

{o.p@C(ē)} unfold o.p@C(ē) {P [ē/x̄] ∗ o.p@D(f̄)}

o : C C extends D resource D.p(Ȳ ȳ) = Q f̄ ⊆ ē

[final] resource C.p(X̄x̄) = P
(FoldEntry)

{P [ē/x̄] ∗ o.p@D(f̄)} fold o.p@C(ē) {o.p@C(ē)}

Defining Abstract Predicate Families

C extends D resource D.p(Ȳ ȳ) = Q |x̄| ≥ |ȳ|
(ExtendFamily)

[final] resource C.p(X̄x̄) = P

C extends D p /∈ D
(NewFamily)

resource C.p(X̄x̄) = P

C extends D resource D.p(Ȳ ȳ) = P p /∈ C |x̄| = |ȳ|
(ImplicitFamily)

resource C.p(X̄x̄) = true
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Using Abstract Predicate Families

Read-only access to predicate entries:

resource C.p(X̄x̄) = P
(Extract)

{o instanceof C ∗ o.p(ē)}
extract o.p@C(ē)

{o instanceof C ∗ o.p@C(ē) ∗ o.p@C(ē) −∗ o.p(ē)}

Access when dynamic type is known:

resource C.p(X̄x̄) = P
(UnfoldFamily)

{o.getClass() == C.class ∗ o.p(ē)}
unfold o.p(ē) at C

{o.getClass() == C.class ∗ o.p@C(ē)}

resource C.p(X̄x̄) = P
(FoldFamily)

{o.getClass() == C.class ∗ o.p@C(ē)}
fold o.p(ē) at C

{o.getClass() == C.class ∗ o.p(ē)}

Access when dynamic type is statically known:

o : C C extends D p ∈ D final resource C.p(X̄x̄) = P
(UnfoldFinalFamily)

{o.p(ē)} unfold o.p(ē) {o.p@C(ē)}

o : C C extends D p ∈ D final resource C.p(X̄x̄) = P
(FoldFinalFamily)

{o.p@C(ē)} fold o.p(ē) {o.p(ē)}

Changing arity of abstract predicates:

o : C C extends D p ∈ D [final] resource C.p(X̄x̄) = P
(Widen)

{o.p(ē)} given V v widen o.p(ē) {∃v : V. o.p(ē, v)}
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o : C C extends D p ∈ D [final] resource C.p(X̄x̄) = P ē = f̄ , v
(Narrow)

{o.p(ē)} narrow o.p(ē) {o.p(f̄)}
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Appendix E

Method override mandatory

In the code sample on the next page, allowing inheritance of the method inc would
be unsound, as the definition of the APF p in Child requires my_v to be incre-
mented whenever v is incremented. Therefore, inc can only ever be inherited if
the inherited method also somehow increments my_v. For this, an implementation
is needed, and hence automatic inheritance is impossible. In the code, the stat-
ic/dynamic approach is assumed. Note that the inc method in Child is not an
actual method, but an example of what the proof of the inherited method would
look like.
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Listing E.1: Example of a program where automatic inheritance would be harmful.
1 class Parent {
2 public int v;
3
4 resource p(int x) = Perm(v, 1) ** v == x;
5
6 given int x;
7 requires p(x);
8 ensures p(x+1);
9 public void inc() {

10 unfold p@Parent(x);
11 v = v + 1;
12 fold p@Parent(x + 1);
13 }
14 }
15
16 class Child extends Parent {
17 public int my_v;
18
19 resource p(int x) = Perm(my_v, 1) ** my_v == x;
20
21 // Inherited method
22 given int x; // Inherited
23 requires p(x); // Inherited
24 ensures p(x+1); // Inherited
25 public void inc() {
26 assert p@Child(x)
27 unfold p@Child(x)
28 assert p@Parent(x) ** my_v == x;
29 super.inc();
30 assert p@Parent(x+1) ** my_v == x;
31 assert my_v == x + 1; // Fails
32 fold p@Child(x+1); // Cannot succeed, as previous assert fails
33 }
34 }
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Appendix F

Java Type ADT

In this appendix we show an example of a type ADT that can model the type
system of Java in Silver. This type ADT was first used by the Nagini verifier [23],
which is designed and implemented by Marco Eilers. We believe that this ADT is
flexible enough to be used for modelling the Java type system as well.

The type ADT mainly uses the following two functions: extends and issubtype.
The extends function is used whenever inheritance appears syntactically: for ex-
ample, when a class indicates it extends another class. The issubtype is supposed
to be derived from all applications of extends by transitivity and reflection. For ex-
ample, if A extends B, and B extends C, then it is not the case that extends(A,
C), but it is the case that issubtype(A, C).

The ADT uses several axioms to model the type system. The first group of
axioms ensures the subtyping relation is established and propagated. This group
starts on line 19 and ends on line 32. It has axioms that state facts such as
transitivity, reflexivity, and that any type is a subtype of Object.

The second group of axioms deals with deriving facts about when two types
are not subtypes. This group starts on line 44 and ends on line 59. It has axioms
that state facts such as:

• Two types that extend the same supertype cannot be subtypes.

• If a type is different from an other type and a subtype of that type, the other
type is not a subtype of that type.

At the end of the listing on line 70, several statements are included that show
how the type ADT is used in Silver code.
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1 domain TYPE {
2
3 function extends(sub: TYPE, super: TYPE): Bool
4
5 function issubtype(sub: TYPE, super: TYPE): Bool
6
7 function isnotsubtype(sub: TYPE, super: TYPE): Bool
8
9 function typeof(obj: Ref): TYPE

10
11 unique function Object(): TYPE
12
13 unique function NullType(): TYPE
14
15 unique function Node(): TYPE
16
17 unique function Leaf(): TYPE
18
19 // Subtyping is transitive
20 axiom issubtype_transitivity {
21 (forall sub: TYPE, middle: TYPE, super: TYPE :: { issubtype(sub,

middle),issubtype(middle, super) } issubtype(sub, middle) &&
issubtype(middle, super) ==> issubtype(sub, super))

22 }
23
24 // Any type is a subtype of itself
25 axiom issubtype_reflexivity {
26 (forall type_: TYPE :: { issubtype(type_, type_) } issubtype(

type_, type_))
27 }
28
29 // Extends establishes subtype relation
30 axiom extends_implies_subtype {
31 (forall sub: TYPE, sub2: TYPE :: { extends(sub, sub2) } extends(

sub, sub2) ==> issubtype(sub, sub2))
32 }
33
34 // Only null is subtype of the Null type
35 axiom null_nonetype {
36 (forall r: Ref :: { typeof(r) } issubtype(typeof(r), NullType())

== (r == null))
37 }
38
39 // Any type subtypes object
40 axiom issubtype_Object {
41 (forall type_: TYPE :: { issubtype(type_, Object()) } issubtype(

type_, Object()))
42 }
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43
44 // If a and b extend c, a is not a subtype of b and vice versa
45 axiom issubtype_exclusion {
46 (forall sub: TYPE, sub2: TYPE, super: TYPE :: { extends(sub,

super),extends(sub2, super) } extends(sub, super) && extends(
sub2, super) && sub != sub2 ==> isnotsubtype(sub, sub2) &&
isnotsubtype(sub2, sub))

47 }
48
49 // If a is a subtype of b, b is not a subtype of a
50 axiom issubtype_exclusion_2 {
51 (forall sub: TYPE, super: TYPE :: { issubtype(sub, super) } {

issubtype(super, sub) }
52 issubtype(sub, super) && sub != super ==> !issubtype(super, sub))
53 }
54
55 // if a subtypes b, but b does not subtype c, a is not a subtype of

c
56 axiom issubtype_exclusion_propagation {
57 (forall sub: TYPE, middle: TYPE, super: TYPE :: { issubtype(sub,

middle),isnotsubtype(middle, super) }
58 issubtype(sub, middle) && isnotsubtype(middle, super) ==> !

issubtype(sub, super))
59 }
60
61 axiom subtype_Node {
62 extends(Node(), Object())
63 }
64
65 axiom subtype_Leaf {
66 extends(Leaf(), Object())
67 }
68 }
69
70 method foo() {
71 var x: Ref;
72 x := new();
73 inhale typeof(x) == Node()
74
75 assert issubtype(typeof(x), Node())
76 assert typeof(x) != Leaf()
77 assert issubtype(Node(), Object())
78 assert !issubtype(Node(), Leaf())
79 assert !(issubtype(typeof(x), Leaf()))
80 }
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Appendix G

Cell/ReCell Full Program

On the next page, we list the full of the example evaluated in Section 8.4.
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2 class Cell {
3 int val;
4 //@ resource state(int x) = Perm(val, 1\1) ** x == val;
5
6 //@ requires state(x);
7 //@ ensures state(x) ** \result == x;
8 int get() {
9 //@ unfold state@Cell(x);

10 return val;
11 //@ fold state@Cell(x);
12 }
13
14 //@ requires state(oldval);
15 //@ ensures state(newVal);
16 void set(int newVal) {
17 //@ unfold state@Cell(oldVal);
18 val = newVal;
19 //@ fold state@Cell(newVal);
20 }
21 }
22
23 class ReCell extends Cell {
24 int bak;
25 //@ resource state(int x, int y) = Perm(bak, 1\1) ** y == bak;
26
27 //@ requires state(x, y);
28 //@ ensures state(x, y) ** \result == x;
29 /*@ with {
30 given (int y) widen state(x);
31 }; @*/
32 /*@ then {
33 narrow state(x, y);
34 }; @*/
35 int get() {
36 //@ unfold state@ReCell(x, y);
37 return super.get();
38 //@ fold state@ReCell(x, y);
39 }
40
41 //@ requires state(oldVal, oldBak);
42 //@ ensures state(newVal, oldVal);
43 /*@ with {
44 given (int oldBak) widen state(oldVal);
45 }; @*/
46 /*@ then {
47 narrow state(newVal, oldval);
48 }; @*/
49 void set(int newVal) {
50 //@ unfold state@ReCell(x, y);
51 bak = super.get();
52 super.set(newVal);
53 //@ fold state@ReCell(x, y);
54 }
55 }
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